

SIR ISSAC NEWTON COLLEGE OF ENGINEERING & TECHNOLOGY.

(Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai) **PAPPAKOIL NAGAPATTINAM – 611002 TAMILNADU INDIA** Ph : 04365-220261/7373765117| E-mail: | Website : <u>www.sincet.in</u>

DEPARTMENT OF MECHANICAL ENGINEERING

Course File

ME 8693 HEAT AND MASS TRANSFER

STAFF NAME : VEERAPANDIAN.K

SUBJECT NAME : ME 8693 HEAT AND MASS TRANSFER

YEAR/SEMESTER : III/VI

SIR ISSAC NEWTON COLLEGE OF ENGINEERING & TECHNOLOGY.

(Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai) **PAPPAKOIL NAGAPATTINAM – 611002 TAMILNADU INDIA** Ph : 04365-220261/7373765117| E-mail: | Website : www.sincet.in

Vision of Institution

Our vision is to impart in our students the career skills and the virtues of humanity, humaneness, honesty and vourage to enable to contirbute continually to the development of society.

Mission of Institution

Our mission is to develop, maintain and improve continuously our quality resoruces for the benefit of the society by producing a citizen group that has an everlasting urge to learn and perform.

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems : Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities with
	an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
PO7	the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering
FUI	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
	of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings
PO10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive clear instructions
PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member
	leader in a team, to manage projects and in multidisciplinary environments
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

SIR ISSAC NEWTON COLLEGE OF ENGINEERING & TECHNOLOGY.

(Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai) **PAPPAKOIL NAGAPATTINAM – 611002 TAMILNADU INDIA** Ph : 04365-220261/7373765117| E-mail: | Website : www.sincet.in

Vision of the Department

To create excellent professionals in the field of Mechanical Engineering and to uplift the quality of technical education on par with the International Standards.

Mission of the Department

1. To reinforce the fundamentals of Science and Mathematics to Mechanical Engineering and critically and relatively investigate complex mechanical systems and processes.

2. To engage in the production, expansion and practice of advanced engineering applications through knowledge sharing activities by interacting with global communities and industries.

3. To equip students with engineering ethics, professional roles, corporate social responsibility and life skills and apply them for the betterment of society.

4. To promote higher studies and lifelong learning and entrepreneurial skills and develop excellent professionals for empowering nation's economy.

PEO's

5. To enrich the technical knowledge of design, manufacturing and management of mechanical systems and develop creative and analytical thinking in research

6. To relate, strengthen and develop the theoretical knowledge of the Mechanical Engineering by exhibiting various concepts applied through diverse industrial exposures and experts' guidance.

7. Facilitate the students to communicate effectively on complex social, professional and engineering activities with strict adherence to ethical principles.

8. Create awareness for independent and lifelong learning and develop the ability to keep abreast of modern trends and adopt them for personal technological growth of the nation.

PSO's

1. To understand the basic concept of various mechanical engineering field such as design, manufacturing, thermal and industrial engineering.

2. To apply the knowledge in advanced mechanical system and processes by using design and analysis techniques.

3. To develop student's professional skills to meet the industry requirements and entrepreneurial skills for improving nation's economy stronger.

ME 8693 HEAT AND MASS TRANSFER

COURSE OUTCOMES:

Upon the completion of this course the students will be able to

C303.1 Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems

C303.2 Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems

C303.3 Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems

C303.4 Explain basic laws for Radiation and apply these principles to radiative heat transfer.

C303.5 Explain the mass transfer and transfer correlations

C303.6 Knowledge about Automobile radiator heat transfer.

C303.7 Knowledge about the refrigerator heat transfering to room

ME 8693 HEAT AND MASS TRANSFER

UNIT I CONDUCTION

General Differential equation of Heat Conduction– Cartesian and Polar Coordinates – One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts.

UNIT II CONVECTION

Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes .

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors - Analysis – LMTD method - NTU method.

UNIT IV RADIATION

Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases.

UNIT V MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer Correlations.

TOTAL : 75 PERIODS

APART FROM SYLLABUS:

Automobile radiators as heat exchangers-performance-Refrigirator heat effects in live room-Earth warming due radiation-Boiler heat transfers to sorroundings.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems
- CO2 Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems
- CO3 Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems
- CO4 Explain basic laws for Radiation and apply these principles to radiative heat transfer.

CO5 Explain the mass transfer and transfer correlations

CO6 Knowledge about Automobile radiator heat transfer.

CO7 Knowledge about the refgirator heat transfering to room

Note:CO6,CO7 From the SRM University ,Chennai.

TEXT BOOKS:

- 1. Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000
- 2. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015

REFERENCES:

- 1. Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 1998.
- 2. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 1998.
- 3. Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002
- 4. Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.
- 5. R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2009

9+6

9+6

9+6

9+6

9+6

SIR ISSAC NEWTON COLLEGE OF ENGINEERING AND TECHNOLOGY

PAPPAKOIL, NAGAPATTINAM.

DEPARTMENT OF MECHANICAL ENGINEERING

Academic Year (2019-2020) Even Semester

UNIT- I CONDUCTION

General Differential equation of Heat Conduction- Cartesian and Polar Coordinates - One Dimensional Steady State Heat Conduction - plane and Composite Systems - Conduction with Internal Heat Generation - Extended Surfaces - Unsteady Heat Conduction - Lumped Analysis -Semi Infinite and Infinite Solids –Use of Heisler's charts DADT

.

	PART – A			
CO Map	ping : C214.1			
Q.No	Questions	BT	Competence	РО
		Level		
1	Write the three dimensional heat transfer Poisson and	BTL-1	Remembering	PO1,
	Laplace equations in Cartesian co-ordinates			PO2,PO12
2	Define Heat transfer?	BTL-1	Remembering	PO1, PO12
3	What are the modes of heat transfer?	BTL-1	Remembering	PO1, PO12
4	What is conduction?	BTL-1	Remembering	PO1, PO12
5	State Fourier's law of conduction.	BTL-1	Remembering	PO1, PO2,PO12
6	Define Thermal conductivity	BTL-1	Remembering	PO1, PO12
7	List down the three types of boundary conditions	BTL-1	Remembering	PO1, PO12
8	Define convection.	BTL-1	Remembering	PO1, PO12
9	Define Radiation	BTL-1	Remembering	PO1, PO12
10	State Newton's law of cooling or convection law	BTL-1	Remembering	PO1, PO2,PO12
11	Define overall heat transfer co-efficient	BTL-1	Remembering	PO1, PO12
12	Define fins or extended surfaces	BTL-1	Remembering	PO1, PO12
13	State the applications of fins	BTL-1	Remembering	PO1, PO12
14	Define fin efficiency	BTL-1	Remembering	PO1, PO12
15	Define Fin effectiveness	BTL-1	Remembering	PO1, PO12
16	What is meant by steady state heat conduction?	BTL-1	Remembering	PO1, PO12
17	What is meant by transient heat conduction or unsteady state conduction	BTL-1	Remembering	PO1, PO12
18	What is Periodic heat flow?	BTL-1	Remembering	PO1, PO12
19	What is non Periodic heat flow?	BTL-1	Remembering	PO1, PO12
20	What is meant by Newtonian heating or cooling process	BTL-1	Remembering	PO1, PO12

21	What is meant by Lumped heat analysis?	BTL-1	Remembering	PO1, PO12
22	What is meant by semi-in finite solids?	BTL-1	Remembering	PO1, PO12
23	What is meant by infinite solid	BTL-1	Remembering	PO1, PO12
24	Define Biot number.	BTL-1	Remembering	PO1, PO12
25	What is the significance of Biot number?	BTL-1	Remembering	PO1, PO12
26	What are the factors affecting the thermal conductivity?	BTL-1	Remembering	PO1, PO12
27	Explain the significance of thermal diffusivity.	BTL-2	Understanding	PO1, PO2,PO12
28	What are Heislers charts?	BTL-1	Remembering	PO1, PO12
29	Define thermal diffusivity	BTL-1	Remembering	PO1, PO12
30	Define Critical radius of thickness of insulation	BTL-1	Remembering	PO1, PO12
31	Define internal heat generation in solids	BTL-1	Remembering	PO1, PO12
	PART – B & C	I		
1	A hollow cylinder of 5cm ID and 10 cm OD, has an inner surface temperature of 200°C and an outer surface temperature of 100°C. If the thermal conductivity of the cylinder material is 70 W/mK. Determine the heat flow through the cylinder per unit length.	BTL-5	Evaluating	PO1, PO2,PO12
2	 (i)Derive general heat conduction equation in Cartesian coordinates. (ii)A surface wall consists of 2.3cm of fire brick and 11.5cm of insulating brick having thermal conductivities of 0.72W/mk and 0.27W/mK respectively. Calculate the rate of heat loss per square meter when the temperature difference between inner and outer surface is 650K 	BTL-5	Evaluating	PO1, PO2,PO12
3	A steel pipe line (K=50w/mk) of I.D. 100mm and O.D 110mm is to be covered with two layers of insulation each having a thickness of 50mm. The thermal conductivity of the first insulation material is 0.06W/mK and that of the second is 0.12 W/mK. Calculate the loss of heat per meter length of pipe and the interface temperature between the two layers of insulation when the temperature of the inside tube surface is 250oC and the outside surface of the insulation is 50oC	BTL-5	Evaluating	PO1, PO2,PO12
4	A cylinder 1m long and 5cm in diameter is placed in an atmosphere at 45oC. It is provided with 10 longitudinal straight fins of material having K=120W/mK. The height of 0.76mm thick fins is 1.27cm from the cylinder surface. The heat transfer coefficient between cylinder and atmospheric air is 17W/m2K.Calculate the rate of heat transfer and the	BTL-5	Evaluating	PO1, PO2,PO12

	temperature at the end of fins if surface temperature of cylinder is 150oC.			
5	A large slab of aluminum at a uniform temperature of 250oC is suddenly exposed to a convective environment at 50oC with a heat transfer coefficient of 500W/m2K. Estimate the temperature at a depth of 5cm after 1 hour. The thermal diffusivity and thermal conductivity of aluminum are 8.4x10-5 m2/s and 215 W/mK. respectively	BTL-5	Evaluating	PO1, PO2,PO12
6	Calculate the temperature in a plane 200mm from the surface of a very thick wall and also the heat flowing per unit area of this plane 10 hours after the surface temperature of the wall changes from 25oC to 800oC and remains constant thereafter. Also find the total energy taken up by the wall in 10 hours. Assume for wall material, $K=0.8$ w/mK and $\alpha=0.003$ m2/h	BTL-5	Evaluating	PO1, PO2,PO12
7	Derive the general heat conduction equation in cylindrical coordinates	BTL-6	Creating	PO1, PO2,PO12
8	Derive the general heat conduction equation for a hollow cylinder	BTL-6	Creating	PO1, PO2,PO12

	UNIT- II CONVEC	TION		
Properti	es of steam - Ranking cycle-Boilers and its a	ccessories-	- Basic thermo	odynamics of
refriger	ators and heat pumps Basics of Heat transfer			
Temgera	ators and heat pumps Dasies of freat transfer			
	PART – A			
CO Map	ping : C214.2			
Q.No	Questions	BT	Competence	PO
~	Questions	Level	Competence	10
1	What is dimensional analysis	BTL-1	Remembering	PO1, PO12
2	Mention the significance of velocity and thermal	BTL-1	Remembering	PO1, PO12
	boundary layer			
3	State Buckingham's theorem	BTL-1	Remembering	PO1,
4		BTL-1	Described	PO2,PO12
4	What are the advantages of dimensional analysis		Remembering	PO1, PO12
5	What are the limitations of dimensional analysis	BTL-1	Remembering	PO1, PO12
6	Define Reynolds number	BTL-1	Remembering	PO1, PO12
7	Define Prandtl number	BTL-1	Remembering	PO1, PO12
8	Define Nusselts Number	BTL-1	Remembering	PO1, PO12
9	Define Grashof number	BTL-1	Remembering	PO1, PO12
10	Define Stanton number	BTL-1	Remembering	PO1, PO12
11	What is meant by Newtonian and non- Newtonian	BTL-1	Remembering	PO1, PO12
	fluids			
12	What is meant by laminar flow and turbulent flow	BTL-1	Remembering	PO1, PO12
13	What is hydro dynamics boundary layer	BTL-1	Remembering	PO1, PO12
14	What is thermal boundary layer	BTL-1	Remembering	PO1, PO12
15	Define convection.	BTL-1	Remembering	PO1, PO12

16	What is meant by free or natural convection	BTL-1	Remembering	PO1, PO12
17	What is forced convection	BTL-1	Remembering	PO1, PO12
18	What is the form of equation used to calculate transfer for flow through cylindrical pipes	BTL-1	Remembering	PO1, PO2,PO12
19	What are the dimensional parameters used in forced convection	BTL-1	Remembering	PO1, PO12
20	Define boundary layer thickness	BTL-1	Remembering	PO1, PO12
21	Indicate the concept of significance of boundary layer	BTL-1	Remembering	PO1, PO12
22	Define displacement thickness.	BTL-1	Remembering	PO1, PO12
23	Define momentum thickness	BTL-1	Remembering	PO1, PO12
24	Define energy thickness	BTL-1	Remembering	PO1, PO12
25	Define bulk temperature	BTL-1	Remembering	PO1, PO12
26	Define fouling factor	BTL-1	Remembering	PO1, PO12
27	Parameters that influence fouling resistances	BTL-1	Remembering	PO1, PO12
28	Give examples of external flow	BTL-1	Remembering	PO1, PO12
29	Write continuity equation	BTL-1	Remembering	PO1, PO12
30	Write momentum equation	BTL-1	Remembering	PO1, PO12
31	Write energy equation	BTL-1	Remembering	PO1, PO12
	PART – B & C			
		[
1	Air at 20°C at 3m/s flows over a thin plate of 2m long and 1m wide. Estimate the boundary layer thickness at the trailing edge, total drag force, mass flow of air between $x = 30$ cm and $x = 80$ cm. Take v = 15 x 106 and p = 1.17 kg/m ³	BTL-5	Evaluating	PO1, PO2,PO12
2	Calculate the convective heat transfer from a radiator 0.5m wide and 1m high at 84°C in a room at 20°C. treat the radiator as a vertical plate	BTL-5	Evaluating	PO1, PO2,PO12
3	 (i) Define the velocity boundary layer and thermal boundary layer thicknesses for flow over a flat plate (ii) Atmospheric air at 150°C with a velocity of 1.25 m/s over a 2 m long flat plate whose temperature is 25°C. Determine the average heat transfer coefficient and the rate of heat transfer for a plate width of 0.5 m. 	BTL-1, BTL-5	Remembering Evaluating	PO1, PO2,PO12
4	A 6m long section of an 8 cm diameter horizontal hot water pipe passes through a large room in which the air and walls are at 20°C. The pipe surface is at 70°C and the emissivity of the pipe surface is 0.7. Find the rate of heat loss from the pipe by natural convection and radiation	BTL-1	Remembering	PO1, PO2,PO12

5	 (i) Explain the development of velocity boundary layer for flow over a flat plate. (ii) Engine oil at 60°C flows with a velocity of 2 m/s over a 5 m long flat plate whose temperature is 20°C. Determine the drag force exerted by oil on the plate and the rate of heat transfer for a plate width of 1 m. 	BTL-2, BTL-5	Understanding Evaluating	PO1, PO2,PO12
6	 (i)Define bulk temperature and thermal entry length for tube flows. (ii) A metallic cylinder of 12.7 mm diameter and 94 mm length is heated internally by an electric heater and its surface is cooled by air. The free stream air velocity and temperatures are respectively 10 m/s and 26.2°C. Under steady operating conditions, heat dissipated by the cylinder is 39.1 W and its avenge surface temperature is 128.4°C. Determine the convection heat transfer coefficient from the above experiment. Also find the convection heat transfer coefficient from an appropriate correlation and compare both 	BTL-1, BTL-5	Remembering Evaluating	PO1, PO2,PO12
7	A steam pipe 20 cm outside diameter runs horizontally in a room at 23°C.Take the outside surface temperature of pipe as 165°C. Determine the heat loss per meter length of the pipe	BTL-5	Evaluating	PO1, PO2,PO12
8	(i) Define Reynold's, Prandtl, Nusselt and Grashoff number and give their expressions. (8) [NOV/DEC 2010] (ii) Air is flowing over a flat plate 5 m long and 2.5 m wide with a velocity of 4 m/s at 15°C. If $p=1.208$ kg/m3 and $u=1.47 \times 10-5 \text{ m2/s}$, calculate the length of plate over which the boundary layer is laminar and thickness of the boundary layer (laminar), shear stress at the location where boundary layer ceases to be laminar and the total drag force on the both sides on that portion of the plate where boundary layer is laminar	BTL-1, BTL-5	Remembering Evaluating	PO1, PO2,PO12
9	(i) Draw the profile of a boundary layer on a flat plate showing the velocity profiles and explain the significance of boundary layer. Define thermal boundary layer. (6) [NOV/DEC 2010] (ii) A vertical cylinder 1.5 m high and 180 mm in diameter is maintained at 100°C in an atmosphere of 20°C. Calculate the heat loss by free convection from the surface of the cylinder. Assume properties of air as $p = 1.06 \text{ kg/m3}$ and $u = 18.97 \times 10-6 \text{ m}^2/\text{s}$, $cp = 1.004 \text{kJ/kg}^\circ\text{C}$ and $k = 0.1042 \text{ kJ/m.K}$.	BTL-1, BTL-5	Remembering Evaluating	PO1, PO2,PO12

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boilingand condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors - Analysis – LMTD method - NTU method.

00.15	PART – A			
CO Maj Q.No	Oping : C214.3 Questions	BT	Competence	РО
Q .110	Questions	Level	Competence	10
1	Define boiling	BTL-1	Remembering	PO1, PO12
2	Differentiate between pool boiling and forced			
	convection boiling	BTL-4	Analyzing	PO1, PO12
3	What advantage does the Effectiveness - NTU	DTI 1	D 1 1	
	method has over the LMTD method	BTL-1	Remembering	PO1, PO12
4	What is meant by condensation	BTL-1	Remembering	PO1, PO12
5	Give the application of boiling and condensation	BTL-1	Remembering	PO1, PO12
6	What is meant pool boiling	BTL-1	Remembering	PO1, PO12
7	What are the modes of condensation	BTL-1	Remembering	PO1, PO12
8	What is Film wise condensation	BTL-1	Remembering	PO1, PO12
9	What is Drop wise condensation	BTL-1	Remembering	PO1, PO12
10	What is heat exchange	BTL-1	Remembering	PO1, PO12
11	What are the types of heat exchanger	BTL-1	Remembering	PO1, PO12
12	What is meant by in direct contact heat exchangers	BTL-1	Remembering	PO1, PO12
13	What is meant by Regenerators	BTL-1	Remembering	PO1, PO12
14	What is meant by Remunerators or surface heat exchangers	BTL-1	Remembering	PO1, PO12
15	What is meant by parallel flow heat exchangers	BTL-1	Remembering	PO1, PO12
16	What is meant by Counter flow heat exchangers	BTL-1 BTL-1	Remembering	PO1, PO12
17	What is meant by cross flow heat exchangers	BTL-1 BTL-1	Remembering	PO1, PO12
18	What is meant by Shell and tube heat exchangers	BTL-1 BTL-1	Remembering	PO1, PO12
19	What is meant by Shen and tube heat exchangers	BTL-1	Remembering	PO1, PO12
20	What is meant by LMTD	BTL-1	Remembering	PO1, PO12
21	What is meant Fouling factor	BTL-1	Remembering	PO1, PO12
22	What is meant by Effectiveness	BTL-1	Remembering	PO1, PO12
23	How film wise differ from drop wise condensation	BTL-1	Remembering	PO1, PO12
24	Give the application of boiling and condensation	BTL-1	Remembering	PO1, PO12
25		BTL-1	Remembering	PO1, PO12
26	Give the merits of drop wise condensation	BTL-1	Remembering	PO1, PO12
27	What is meant by NTU? Give its expression	BTL-1	Remembering	PO1, PO12
	PART – B & C			
1	Consider laminar film condensation of a			
	stationary vapour on a vertical flat plate of	DET		PO1,
	length L and width b. Derive an expression for	BTL-6	Creating	PO2,PO12
	the average heat transfer coefficient. State the assumptions made			
2	A vertical tube of 50mm outside diameter and			
—	2m long is exposed to steam at atmospheric			DO 1
	pressure. The outer surface of the tube is	BTL-5	Evaluating	PO1, PO2,PO12
	maintained at the temperature of 84°C by			F02,F012
	circulating cold water through the tube.			

	determine the rate of heat transfer and also the			
	condenser mass flow rate			
3				
3	(i) Discuss critical heat flux and Leidenfrost			
	point.			
	(ii) A 10 by 10 array of horizontal tubes of 1.27			
	cm diameter is exposed to pure steam at	BTL-6	Creating	PO1,
	atmospheric pressure. If the tube wall		8	PO2,PO12
	temperature is 98°C, Estimate the mass of			
	steam condensed assuming a tube length of 1.5			
	m.			
4	Derive the L MT D for a parallel flow heat	BTL-6	Creating	PO1,
	exchanger stating the assumptions	DIL-0	Creating	PO2,PO12
5	A counter flow double pipe heat exchanger			
	using superheated steam is used to hot water at			
	the rate of 10500 kg/h. The steam enters the			
	heat exchanger at 180°C and leaves at 130°C.			DO1
	The inlet and exit temperature of water are 30°C	BTL-5	Evaluating	PO1,
	and 80°C respectively. If overall heat transfer		0	PO2,PO12
	from steam to water is 814W/m°C. Calculate			
	the heat transfer area. What would be the			
	increase in area if the fluid flows were parallel			
6	Oil (Cp=3.6KJ/Kg°C) at 100°C flows at the rate			
-	of 3000Kg/h and enters into a parallel flow heat			
	exchanger. Cooling water(Cp=4.2KJ/Kg°C)			
	enters the heat exchanger at 10° C at the rate of	BTL-5		
	50000K g/b. The heat transfer area is $10m^2$ and		Evaluating	PO1,
	50000Kg/h. The heat transfer area is $10m^2$ and BTL - U=1000W/m ^{2o} C calculate the following (i) The	DIL-5	Evaluating	PO2,PO12
	outlet temperature of oil, and water (ii) The			
	maximum possible outlet temperature of water.			

UNIT IVRADIATIONBlack Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields.

Radiation through gases.

CO Ma	PART – A pping : C214.4			
Q.No	Questions	BT Level	Competence	РО
1	Define Radiation	BTL-1	Remembering	PO1, PO12
2	What is max planck theory of black body radiation	BTL-1	Remembering	PO1, PO12
3	What is thermal radiation	BTL-1	Remembering	PO1, PO12
4	Define emissive power	BTL-1	Remembering	PO1, PO12
5	Define monochromatic emissive power.	BTL-1	Remembering	PO1, PO12
6	What is meant by absorptive	BTL-1	Remembering	PO1, PO12
7	What is meant by reflectivity	BTL-1	Remembering	PO1, PO12
8	What is meant by transmissivity	BTL-1	Remembering	PO1, PO12
9	What is black body	BTL-1	Remembering	PO1, PO12
10	State Wien's displacement law	BTL-1	Remembering	PO1, PO12
11	State the Stefan -Boltzmann law	BTL-1	Remembering	PO1, PO12
12	Define Emissivity.[BTL-1	Remembering	PO1, PO12
13	What is meant by gray body	BTL-1	Remembering	PO1, PO12
14	State Kirchoff's law of radiation	BTL-1	Remembering	PO1, PO12
15	Define intensity of radiation	BTL-1	Remembering	PO1, PO12
16	State Lambert's cosine law	BTL-1	Remembering	PO1, PO12
17	What is the purpose of radiation shield	BTL-1	Remembering	PO1, PO12
18	Define Irradiation	BTL-1	Remembering	PO1, PO12
19	What is radiosity	BTL-1	Remembering	PO1, PO12
20	What are the assumptions made to calculate radiation exchange between the surfaces	BTL-1	Remembering	PO1, PO12
21	What is meant by shape factor and mention its physical significance	BTL-1	Remembering	PO1, PO12
22	Discuss the radiation characteristics of carbondioxide and water vapour.	BTL-1	Remembering	PO1, PO12
23	Give reciprocity theorem	BTL-1	Remembering	PO1, PO12
24	Define summation rule	BTL-1	Remembering	PO1, PO12
25	Define symmetry rule	BTL-1	Remembering	PO1, PO12
26	What is mean by reradiating surfaces	BTL-1	Remembering	PO1, PO12
27	What is mean by spectral directional emissivity	BTL-1	Remembering	PO1, PO12
28	Describe green house effect	BTL-1	Remembering	PO1, PO12
29	What is mean by solar heat gain coefficient(SHGC)	BTL-1	Remembering	PO1, PO12
30	Describe direct method	BTL-1	Remembering	PO1, PO12
31	What is mean by Beer's Law	BTL-1	Remembering	PO1, PO12
32	What is mean by fully developed region	BTL-1	Remembering	PO1, PO12

1	Emissivities of two large parallel plates maintained at 800°C and 300°C are 0.3 and 0.5 respectively. Find the net radiation heat exchange per square meter for this plate. Find the percentage reduction in heat transfer when a polished aluminum radiation shield (ε =0.05) is placed between them. Also find the temperature of shield.	BTL-5	Evaluating	PO1, PO2,PO12
2	Two large parallel plates of 1mx1m spaced 0.5m apart in a very large room whose walls are at 27°C. The plates are at 900°C and 400°C with emissivities 0.2 and 0.5 respectively. Find the net heat transfer to each plate and to the room	BTL-1	Remembering	PO1, PO2,PO12
3	Derive the radiation exchange between (i)Large parallel gray surfaces and (ii) small gray bodies	BTL-6	Creating	PO1, PO2,PO12
4	i) Two black square plates of size 1.0 by 1.0m are placed parallel to each other at a distance of 0.4m. One plate is maintained at a temperature of 900°C and the other at 400°C. Find the net exchange of energy due to radiation between the two plates ii) Two circular discs of diameter 20cm each are placed 2m apart. Calculate the radiation heat exchange for these plates if these are maintained at 800°C and 300°C respectively and their corresponding emissivity's are 0.3 and 0.5	BTL-5	Evaluating	PO1, PO2,PO12
5	A pipe carrying steam having an outside diameter of 20cm runs in a large room, and is exposed to air at a temperature of 30°C. The pipe surface temperature is 200°C. Find the heat loss per meter length of the pipe by convection and radiation taking the emissivity of the pipe surface as 0.8.	BTL-1	Remembering	PO1, PO2,PO12
6	A flue gas at temperature, $T_g=950^{\circ}C$ total pressure 1 atm, and containing 10% CO ₂ and 45 H ₂ O, flows over a bank of tubes arranged in an equilateral triangular arrangement with tubes of 44mm dia having longitudinal and cross pitches each equal to 2D, Assuming the tube surfaces as gray with an emissivity of 0.8 and at a uniform temperature Tw=500°C, determine the net radiation exchange between the gas and the tube walls. Also calculate the coefficient of heat transfer by radiation.	BTL-5	Evaluating	PO1, PO2,PO12

UNIT – V – MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion– Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy –Convective MassTransfer Correlations.

CO Ma	pping: C214.5			
	pping . C214.5			
Q.No	Questions	BT	Competence	РО
		Level		
1	Define Schmidt Number	BTL-1	Remembering	PO1, PO12
2	What are the attributes of Fick's law of diffusion	BTL-1	Remembering	PO1, PO12
3	Define molar and mass concentration	BTL-1	Remembering	PO1, PO12
4	Define Scherwood number	BTL-1	Remembering	PO1, PO12
5	Define Mass Concentration.	BTL-1	Remembering	PO1, PO12
6	Define mass fraction	BTL-1	Remembering	PO1, PO12
7	Define mole fractions	BTL-1	Remembering	PO1, PO12
8	State Fick's Law of Diffusion	BTL-1	Remembering	PO1, PO12
9	Give the examples of mass transfer	BTL-1	Remembering	PO1, PO12
10	What are the modes of mass transfer	BTL-1	Remembering	PO1, PO12
11	What is molecular diffusion	BTL-1	Remembering	PO1, PO12
12	What is Eddy diffusion	BTL-1	Remembering	PO1, PO12
13	What is convective mass transfer	BTL-1	Remembering	PO1, PO12
14	What is free convective mass transfer	BTL-1	Remembering	PO1, PO12
15	Define forced convective mass transfer	BTL-1	Remembering	PO1, PO12
16	Give two examples of convective mass transfer	BTL-1	Remembering	PO1, PO12
17	Define molar concentration	BTL-1	Remembering	PO1, PO12
18	Define mole fraction	BTL-1	Remembering	PO1, PO12
19	Define molar density	BTL-1	Remembering	PO1, PO12
20	What is mean by partial density	BTL-1	Remembering	PO1, PO12
21	What is mean by binary mixture	BTL-1	Remembering	PO1, PO12
22	What is mean by soret effect	BTL-1	Remembering	PO1, PO12
23	Describe the two mechanisms of mass transfer	BTL-1	Remembering	PO1, PO12
24	Explain Mass Transfer Coefficient	BTL-1 BTL-5	Evaluating	PO1, PO12
25	Define diffusion velocity	BTL-3 BTL-1	Remembering	PO1, PO12
26	Define mass average velocity of the flow	BTL-1	Remembering	PO1, PO12
27	Define permeability.	BTL-1	Remembering	PO1, PO12
28	What is mean by vapor barriers either vapor barriers	BTL-1	Remembering	PO1, PO12
29	What is mean by moving medium	BTL-1	Remembering	PO1, PO12
30	Define homogeneous fluid	BTL-1	Remembering	PO1, PO12
31	Define non-homogeneous fluid	BTL-1	Remembering	PO1, PO12
32	What is mean by simultaneous heat and mass transfer	BTL-1	Remembering	PO1, PO12

PART B& C				
1	Dry air at 27°C and 1 atm flows over a wet flat plate 50cm long at a velocity of 50m/s. Calculate the mass transfer coefficient of water vapor in air at the end of the plate.	BTL-5	Evaluating	PO1, PO2,PO12
2	 (i) What are the assumptions made in the 1-D transient mass diffusion problems? (ii) The dry bulb and wet bulb temperature recorded by a thermometer in moist air are 27°C and 17°C respectively. Determine the specific humidity of air assuming the following values: Prandtl Number=0.74, Schmidt Number =0.6, Specific heat at constant pressure=1.004 KJ/KgK, pressure=1.0132x105 N/m² 	BTL-5	Evaluating	PO1, PO2,PO12
3	 (i) How does mass transfer differ from bulk fluid motion ? State Fick's law of diffusion (ii)An open pan of 20cm diameter and 8cm depth contains water at 25°C and is exposed to dry atmospheric air. Assuming the rate of diffusion of water as 8.54x10-4 Kg/h, find the diffusion coefficient. 	BTL-1	Remembering	PO1, PO2,PO12
4	 i) Explain the Ficks first and second laws of diffusion ii) Explain the phenomenon of equimolar counter diffusion. Drive an expression for equimolar counter diffusion between two gases or liquids 	BTL-2	Understanding	PO1, PO2,PO12
5	A mixture of O_2 and N_2 with their partial pressures in the ratio 0.21 to 0.79 is in a container at 25°C. Calculate the molar concentration, the mass density, the mole fraction, and the mass fraction of each species for a total pressure of 1 bar. What would be the average molecular weight of the mixture	BTL-1	Remembering	PO1, PO2,PO12
6	CO_2 and air experience equimolar counter diffusion in a circular tube whose length and diameter are 1m and 50mm respectively. The system is at a total pressure of 1 atm and a temperature of 25°C. The ends of the tube are connected to large chambers in which the species concentrations are maintained at fixed values. The partial pressure of CO_2 at one end is 190mm of Hg while at the other end is 95mm Hg. Estimate the mass transfer rate of CO_2 and air through the tube	BTL-5	Evaluating	PO1, PO2,PO12