Reg. No. : \square

Question Paper Code : 40786

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Third Semester
Civil Engineering
MA 8353 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to : Aeronautical Engineering/Aerospace Engineering/
Agriculture Engineering/Automobile Engineering/Electrical and Electronics
Engineering/Electronics and Instrumentation Engineering/
Industrial Engineering/Industrial Engineering and Management/
Instrumentation and Control Engineering/Manufacturing Engineering/
Marine Engineering/Material Science and Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation
Engineering/Mechatronics Engineering/Production Engineering/Robotics and Automation/Bio Technology/Biotechnology and Biochemical Engineering/Chemical and Electrochemical Engineering/Food Technology/Pharmaceutical Technology)
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Form the partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' from the relation $z=a(x+y)+b$.
2. Find the complete solution of $p q=x y$.
3. Fourier series of a function $f(x)=\left\{\begin{array}{ll}\pi+x, & -\pi<x<0 \\ \pi-x, & 0<x<\pi\end{array}\right.$ is given by $\frac{\pi}{2}+\frac{4}{\pi}\left(\sum_{n=1,3,5, \ldots, \ldots} \frac{1}{n^{2}} \cos n x\right)$. What is the function represented by the same Fourier series the interval $(\pi, 3 \pi)$?
4. Find the Fourier series of a function $f(x)$ up to the first harmonic from the following data $n=12, \quad \sum f(x)=50.090, \quad \sum f(x) \cos x=14.699 \quad$ and $\sum f(x) \sin x=18.962$.
5. Classify the partial differential equation
$x^{2} \frac{\partial^{2} u}{\partial x^{2}}-2 x y \frac{\partial^{2} u}{\partial x \partial y}+\left(1+y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial u}{\partial x}+3 \frac{\partial u}{\partial y}-5 u=x$.
6. Find the steady state temperature of a rod of length 10 cm whose ends are kept at $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively.
7. State the exponential form of Fourier integral theorem.
8. Find the Fourier sine transform of a function $f(x)=e^{-2 x}+4 e^{-3 x}$.
9. Find the Z-transform of $(-1)^{n}$.
10. State initial value theorem in Z-transforms.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the singular solution of $z=p x+q y+p^{2}+p q+q^{2}$.
(ii) Solve $\left(D^{3}-6 D^{2} D^{\prime}+12 D D^{\prime 2}-8 D^{\prime 3}\right) z=e^{2 x+y}$.

Or

(b) (i) Find the general solution of $\left(z^{2}-2 y z-y^{2}\right) \frac{\partial z}{\partial x}+x(y+z) \frac{\partial z}{\partial y}=x(y-z)$.
(ii) Solve $\left(D^{2}-5 D D^{\prime}+6 D^{\prime 2}\right) z=y \sin x$.
12. (a) (i) Find the Fourier series for the function $f(x)=|x|,-l<x<l$. Hence find the value of $1^{-2}+3^{-2}+5^{-2}+\ldots .$.
(ii) Find the half-range Fourier sine series for $f(x)=x(\pi-x)$ in $(0, \pi)$, and hence show that $1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\ldots .=\frac{\pi^{3}}{32}$.

Or
(b) (i) Find the complex form of the Fourier series of a function $f(x)=e^{-a x}$ in the interval $(-l, l)$.
(ii) Find the half-range cosine series for $f(x)=\left\{\begin{array}{cc}x, & 0<x<\pi / 2 \\ \pi-x & \pi / 2<x<\pi\end{array}\right.$. Hence deduce the value $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
13. (a) A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form of the curve $y=x(l-x)$ and also by imparting a constant velocity ' k ' to every point of the string in this position at time $t=0$. Find the displacement function $y(x, t)$.

Or

(b) Find the steady state temperature distribution in a rectangular plate of sides ' a ' and ' b ' which is insulated on the lateral surface and three of whose edges $x=0, x=a, y=b$ are kept at zero temperature, if the temperature in the edge $y=0$ is given by $3 \sin \frac{2 \pi x}{a}+2 \sin \frac{3 \pi x}{a}$.
14. (a) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2}, & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$. Hence evaluate $\int_{0}^{\infty}\left(\frac{\sin x-x \cos x}{x^{3}}\right) \cos \frac{x}{2} d x$.
(ii) Use Fourier cosine transforms method to evaluate

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x \tag{6}
\end{equation*}
$$

Or
(b) (i) Find the Fourier transform of $f(x)=\frac{\sin a x}{x}$ and hence find the value of $\int_{-\infty}^{\infty} \frac{\sin ^{2} a x}{x^{2}} d x$, using Parseval's identity.
(ii) Find the Fourier cosine transform of $e^{-a x}$. Use it to find the Fourier transform of $e^{-a|x|} \cos b x$.
15. (a) (i) Find the Z-transform of $\frac{2 n+3}{(n+1)(n+2)}$.
(ii) Solve, by using Z-transform, the equation $y_{n+2}+4 y_{n+1}+4 y_{n}=n$, given that $y_{0}=0$ and $y_{1}=1$.

Or
(b) (i) Find the Z-transform of $f(n) * g(n)$, where

$$
f(n)=\left\{\begin{array}{ll}
(1 / 3)^{n}, & n \geq 0 \tag{8}\\
(1 / 2)^{-n}, & n<0
\end{array} \text { and } g(n)=(1 / 2)^{n} U(n) .\right.
$$

(ii) Find the inverse Z - transform of $\frac{4 z^{3}}{(2 z-1)^{2}(z-1)}$, by using the method of partial fractions.

