$\left|\mid \quad\right.$ Reg. No. : $\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline & & & & & & & & & & & \\ \hline\end{array}$

Question Paper Code: X20781

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

AND APRIL/MAY 2021
Third Semester
Civil Engineering
MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to all Branches except Environmental Engineering, Textile Chemistry, Textile Technology, Fashion Technology and Pharmaceutical Technology) (Regulations 2013)
(Also common to PTMA 6351 - Transforms and Partial Differential Equations for B.E. Part-time - Civil Engineering, Electronics and Communication Engineering, Mechanical Engineering - Second Semester - Regulations 2014)
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
(10×2=20 Marks)

1. Construct the partial differential equation of all spheres whose centres lie on the z -axis, by the elimination of arbitrary constants.
2. Solve $\left(D+D^{\prime}-1\right)\left(D-2 D^{\prime}+3\right) z=0$.
3. The instantaneous current ' i ' at time t of an alternating current wave is given by $\mathrm{i}=\mathrm{I}_{1} \sin \left(\omega \mathrm{t}+\alpha_{1}\right)+\mathrm{I}_{3} \sin \left(3 \omega \mathrm{t}+\alpha_{3}\right)+\mathrm{I}_{5} \sin \left(5 \omega t+\alpha_{5}\right)+\ldots$. Find the effective value of the current ${ }^{\text {' } i}$.
4. If the Fourier series of the function $f(x)=x+x^{2}$, in the interval $(-\pi, \pi)$ is $\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n}\left[\frac{4}{n^{2}} \cos n x-\frac{2}{n} \sin n x\right]$, then find the value of the infinite series $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$
5. State the assumptions in deriving one-dimensional wave equation.
6. State the three possible solutions of the one-dimensional heat (flow unsteady state) equation.
7. If $\mathrm{F}(\mathrm{s})$ is the Fourier transform of $\mathrm{f}(\mathrm{x})$, prove that $\mathrm{F}\{\mathrm{f}(\mathrm{x}-\mathrm{a})\}=\mathrm{e}^{\text {ias }} \mathrm{F}(\mathrm{s})$.
8. Find Fourier sine transform of $\frac{1}{x}$
9. Find $Z\left[\cos \left(\frac{n \pi}{2}\right)\right]$.
10. State initial and final value theorem for Z-transforms.
PART - B
11. a) i) Solve : $\left(x^{2}-y z\right) p+\left(y^{2}-x z\right) q=\left(z^{2}-x y\right)$.
ii) Solve : $\left(\mathrm{D}^{2}-3 \mathrm{D} \mathrm{D}^{\prime}+2 \mathrm{D}^{2}\right) \mathrm{z}=(2+4 \mathrm{x}) \mathrm{e}^{\mathrm{x}+2 \mathrm{y}}$.
(OR)
b) i) Obtain the complete solution of $p^{2}+x^{2} y^{2} q^{2}=x^{2} z^{2}$.
ii) Solve $z=p x+q y+p^{2} q^{2}$ and obtain its singular solution.
12. a) i) Expand $f(x)=x^{2}$ as a Fourier series in the interval $(-\pi, \pi)$ and hence deduce that $1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\ldots=\frac{\pi^{4}}{90}$.
ii) Obtain the constant term and the coefficient of the first sine and cosine terms in the Fourier expansion of y as given in the following table :

\mathbf{x}	0	1	2	3	4	5
\mathbf{y}	9	18	24	28	26	20
		$($ OR)				

b) i) Expand $f(x)=e^{-a x},-\pi<x<\pi$ as a complex form Fourier series.
ii) Expand $f(x)=\left\{\begin{array}{cc}x, & 0<x<1 \\ 2-x, & 1<x<2\end{array}\right.$ as a series of cosines in the interval (0, 2).
13. a) A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{l}$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $v=\left\{\begin{array}{cl}\frac{2 \mathrm{kx}}{l} & \text { in } 0<\mathrm{x}<\frac{l}{2} \\ \frac{2 \mathrm{k}(l-\mathrm{x})}{l} & \text { in } \frac{1}{2}<\mathrm{x}<l\end{array}\right.$. Find the displacement of the string at any distance x from one end at any time t .

> (OR)
b) A bar 10 cm long with insulated sides has its ends A and B maintained at temperature $50^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively, until steady state conditions prevails. The temperature at A is suddenly raised to $90^{\circ} \mathrm{C}$ and at the same time lowered to $60^{\circ} \mathrm{C}$ at B. Find the temperature distributed in the bar at time t .
14. a) Find the $\underset{\infty}{\text { Fourier }} \underset{\sin x}{\sin } \underset{\sim}{\infty}(\sin x)^{2}$ given by $f(x)=\left\{\begin{array}{ll|l}1 & \text { for } & |x|<2 \\ 0 & \text { for } & |x|>2\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$ and $\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x$.
(OR)
b) i) Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{a}^{2} \mathrm{x}^{2}}$ for any $\mathrm{a}>0$.
ii) Evaluate $\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)}$ using Fourier transforms.
15. a) i) Find $Z\left[\frac{1}{(n+1)(n+2)}\right]$.
ii) Using convolution theorem evaluate $\mathrm{Z}^{-1}\left[\frac{8 z^{2}}{(2 z-1)(4 z+1)}\right]$.
(OR)
b) i) Using Z-Transform solve $\mathrm{y}(\mathrm{n}+3)-3 \mathrm{y}(\mathrm{n}+1)+2 \mathrm{y}(\mathrm{n})=0$, with $\mathrm{y}(0)=4, \mathrm{y}(1)=0$,

$$
\begin{equation*}
y(2)=8 . \tag{8}
\end{equation*}
$$

ii) Find $\mathrm{Z}^{-1}\left[\frac{\mathrm{z}}{(\mathrm{z}-1)\left(\mathrm{z}^{2}+1\right)}\right]$ by using integral method.

