
Question Paper Code : 50779

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017
 Third Semester
 Civil Engineering MA 6351 -TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Mechanical Engineering (Sandwich)/ Aeronautical Engineering/ Agriculture Engineering/ Automobile Engineering/ Biomedical Engineering/ Computer Science and Engineering/ Electrical and Electronics Engineering/ Electronics and Communication Engineering/ Electronics and Instrumentation Engineering/ Geoinformatics Engineering/ Industrial Engineering/ Industrial Engineering and Management/ Instrumentation and Control Engineering/ Manufacturing Engineering/Marine Engineering/Materials Science and Engineering/Mechanical Engineering/Mechanical and Automation Engineering/ Mechatronics Engineering/ Medical Electronics/Petrochemical Engineering/
Production Engineering/ Robotics and Automation Engineering/ Biotechnology, Chemical Engineering/ Chemical and Electrochemical Engineering/
Food Technology/ Information Technology/ Petrochemical Technology/Petroleum Engineering/ Plastic Technology/Polymer Technology)
(Regulations 2013)
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.

PART - A

1. Find the partial differential equation by eliminating the arbitrary function ' f ' from the relation $\mathrm{z}=\mathrm{f}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$.
2. Find the complete integral of $\sqrt{\mathrm{p}}+\sqrt{\mathrm{q}}=1$.
3. State Dirichlet's conditions for a given function $f(x)$ to be expanded in Fourier series.
4. Write the complex form of Fourier series for a function $\mathrm{f}(\mathrm{x})$ defined in $-l<\mathrm{x}<l$.
5. What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation?
6. State any two solutions of the Laplace equation $u_{x x}+u_{y y}=0$ involving exponential terms in x or y.
7. If $F[f(x)]=F(s)$, then find $F[f(a x)]$.
8. State the convolution theorem for Fourier transforms.
9. Find the Z-transform of the function $f(n)=1 / n$.
10. Form the difference equation by eliminating arbitrary constant 'a' from $y_{n}=a \cdot 2^{n}$.
PART - B
(5×16=80 Marks)
11. a) i) Find the singular integral of $z=p x+q y+p^{2}-q^{2}$.
ii) Find the general integral of $(x-2 z) p+(2 z-y) q=y-x$.
(OR)
b) Solve the following equations.

$$
\begin{align*}
& \text { i) }\left(\mathrm{D}^{2}+2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime^{2}}\right) \mathrm{z}=\mathrm{e}^{\mathrm{x}-\mathrm{y}+\mathrm{xy}} \tag{8}\\
& \text { ii) }\left(\mathrm{D}^{2}-5 \mathrm{DD}^{\prime}+6 \mathrm{D}^{\prime 2}\right) \mathrm{z}=\mathrm{y} \sin \mathrm{x} . \tag{8}
\end{align*}
$$

12. a) i) Find the Fourier series for a function $f(x)=x+x^{2}$ in $(-\pi, \pi)$ and hence deduce the value of $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots .$.
ii) Find the Fourier series of $y=f(x)$ up to first harmonic which is defined by the following data in $(0,2 \pi)$:

\mathbf{x}	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$\mathbf{f}(\mathbf{x})$	1	1.4	1.9	1.7	1.5	1.2	1

(OR)
b) i) Find the half-range cosine series for $f(x)=x$ in $(0, \pi)$. Hence deduce the value

$$
\begin{equation*}
\text { of } \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \tag{8}
\end{equation*}
$$

ii) Find the Fourier series for a function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}l-\mathrm{x}, & 0<\mathrm{x} \leq l \\ 0, & l<\mathrm{x} \leq 2 l\end{array}\right.$ in $(0,2 l)$.
13. a) A tightly stretched string of length l has its end fastened at $x=0, x=l$. At $t=0$, the string is in the form $f(x)=\mathrm{kx}(l-\mathrm{x})$ and then released. Find the displacement at any point of the string at a distance x from one end and at any time $t>0$. (OR)
b) A rod of length $l \mathrm{~cm}$ has its ends A and B kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively, until steady state conditions prevail. If the temperature at B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature distribution $\mathrm{u}(\mathrm{x}, \mathrm{t})$ at a distance x from A at any time t .
14. a) i) If $\mathrm{F}_{\mathrm{S}}(\mathrm{s})$ and $\mathrm{F}_{\mathrm{C}}(\mathrm{s})$ denote Fourier sine and cosine transform of a function $f(x)$ respectively, then show that

$$
\begin{equation*}
\mathrm{F}_{\mathrm{S}}\{\mathrm{f}(\mathrm{x}) \sin \mathrm{ax}\}=\frac{1}{2}\left\{\mathrm{~F}_{\mathrm{C}}(\mathrm{~s}-\mathrm{a})-\mathrm{F}_{\mathrm{C}}(\mathrm{~s}+\mathrm{a})\right\} \tag{4}
\end{equation*}
$$

ii) Find the Fourier transform of a function $f(x)=\left\{\begin{array}{cc}1-|x| \text { if }-1<x<1 \\ 0, & \text { otherwise }\end{array}\right.$ and hence find the value of $\int_{0}^{\infty} \frac{\sin ^{4} t}{t^{4}} d t$ by Parseval's identity.
(OR)
b) Find the Fourier sine and cosine transforms of a function $f(x)=e^{-x}$. Using Parseval's identity, evaluate :
(1) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$ and (2) $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}}$
15. a) i) Find the Z-transform of $\frac{2 n+3}{(n+1)(n+2)}$.
ii) Find $Z^{-1}\left[\frac{z^{2}}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}\right]$ by using convolution theorem.
(OR)
b) i) Find the inverse Z-transform of $\frac{z^{3}}{(z-1)^{2}(z-2)}$ by method of partial fraction.
ii) Solve the difference equation $y(n+2)-7 y(n+1)+12 y(n)=2^{n}$, given that $y(0)=0$ and $y(1)=0$, by using Z-transform.

