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answer all questions. 

 paRT – a  (10×2=20 Marks)

 1. find the value of a0 in the fourier series expansion of f(x) = ex in (0, 2π). 

 2. find the half range sine series expansion of f(x) = 1 in (0, 2).  

 3. state fourier integral theorem.

 4. find the fourier sine transform of f(x) = e–x/2. 

 5. form the pDE from (x – a)2 + (y – b)2 + z2 = r2.

 6. find the complete integral of p + q = pq.

 7. What is the basic difference between the solutions of one dimensional wave 
equation and one dimensional heat equation with respect to the time ?

 8. Write down the partial differential equation that represents steady state heat 
flow in two dimensions and name the variables involved.

 9. find the Z-transform of an.

 10. solve yn+1 – 2 yn = 0, given that y(0) = 2. 
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 paRT – B  (5×16=80 Marks)

 11. a) i) find the fourier series of x2 in (– π, π) and hence deduce that  
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  b) i) find the complex form of fourier series of cos ax in (– π, π), where “a” 
    is not an integer. (8)

   ii) obtain the fourier cosine series of (x – 1)2, 0 < x < 1 and hence show  

that 1
1

1
2

1
3 62 2 2

2

+ + + =...
π .    (8)

 12. a) i) find the fourier transform of f x
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   ii) find the fourier transform of f x
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  b) i) find the fourier cosine and sine transforms of f(x) = e–ax, a > 0 and 
    hence deduce the inversion formula. (8)

   ii) find the fourier cosine transform of e a x− 2 2 , a > 0. Hence show that the 
    function e x− 2 2/  is self-reciprocal.    (8)

 13. a) i) from the pDE by eliminating the arbitrary functions f1, f2 from the 
    relation Z = xf1(x + t) + f2(x + t). (8)

   ii)  solve 
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  b) i) solve x2p + y2q = z(x + y). (8)

   ii) solve (r + s – 6t) = y cos x. (8)
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 14. a) a tightly stretched string with fixed end points x = 0 and x = l is initially in 
a position given by y (x, 0) = K (lx – x2). it is released from rest from this 

   positions. find the expression for the displacement at any time ‘t’.  (16)

(oR)

  b) find the solution to the equation ∂
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   u(0, t) = 0, u(l, t) = 0 for t > 0 and u x
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 15. a) i) find Z[n(n – 1) (n – 2)]. (8)

   ii) using Convolution theorem, find the inverse Z-transform of   
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  b) i) solve the difference equation y(k + 2) + y(k) = 1, y(0) = y(1) = 0, using 

    Z-transform. (8)

   ii) solve yn+2 + yn = 2n.n, using Z-transform. (8)
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