Reg. No. \square

Question Paper Code : 57502

B.E./B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016
 Third Semester
 Civil Engineering
 MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches except Environmental Engineering, Textile Chemistry, Textile Technology, Fashion Technology and Pharmaceutical Technology)
(Regulations 2013)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.
PART - A ($10 \times 2=20$ Marks $)$

1. Form the partial differential equation by eliminating the arbitrary functions from

$$
\mathrm{f}\left(x^{2}+\mathrm{y}^{2}, \mathrm{z}-x \mathrm{y}\right)=0 .
$$

2. Find the complete solution of the partial differential equation $p^{3}-q^{3}=0$.
3. Find the value of the Fourier series of $f(x)=\left\{\begin{array}{l}0 \text { in }(-c, 0) \\ 1 \text { in }(0, c)\end{array}\right.$ at the point of discontinuity $x=0$.
4. Find the value of b_{n} in the Fourier series expansion of $\mathrm{f}(x)=\left\{\begin{array}{c}x+\pi \text { in }(-\pi, 0) \\ -x+\pi \text { in }(0, \pi)\end{array}\right.$

www.pandianprabu.weebly.com

5. Classify the partial differential equation $u_{x x}+u_{x y}=f(x, y)$.
6. Write down all the possible solutions of one dimensional heat equation.
7. State Fourier integral theorem.
8. Find the Fourier transform of a derivative of the function $\mathrm{f}(x)$ if $\mathrm{f}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
9. Find $Z\left\{\frac{1}{n!}\right\}$
10. Find $Z\left\{(\cos \theta+i \sin \theta)^{n}\right\}$.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Solve the equation $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
(ii) Find the singular integral of the equation $\mathrm{z}=\mathrm{p} x+\mathrm{qy}+\sqrt{1+\mathrm{p}^{2}+\mathrm{q}^{2}}$.

OR

(b) (i) Solve : $\left(\mathrm{D}^{3}-2 \mathrm{D}^{2} \mathrm{D}^{\prime}\right) \mathrm{z}=2 \mathrm{e}^{2 x}+3 x^{2} \mathrm{y}^{\star}$.
(ii) Solve : $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)$
12. (a) (i) Find the Fourier series of $\mathrm{f}(x)=x$ in $-\pi<x<\pi$.
(ii) Find the Fourier series expansion of $\mathrm{f}(x)=|\cos x|$ in $-\pi<x<\pi$.

OR

(b) (i) Find the half range sine series of $\mathrm{f}(x)=x \cos \pi x$ in (0, 1).
(ii) Find the Fourier cosine series up to third harmonic to represent the function given by the following data :

$x:$	0	1	2	3	4	5
$y:$	4	8	15	7	6	2

13. (a) Find the displacement of a string stretched between two fixed points at a distance of $2 l$ apart when the string is initially at rest in equilibrium position and points of the string are given initial velocities v where $v=\left\{\begin{array}{c}\frac{x}{l} \text { in }(0, l) \\ \frac{2 l-x}{l} \text { in }(l, 2 l)\end{array}, x\right.$ being the distance measured from one end.

OR

(b) A long rectangular plate with insulated surface is $l \mathrm{~cm}$ wide. If the temperature along one short edge is $u(x, 0)=\mathrm{k}\left(l x-x^{2}\right)$ for $0<x<l$, while the other two long edges $x=0$ and $x=1$ as well as the other short edge are kept at $0^{\circ} \mathrm{C}$, find the steady state temperature function $\mathbf{u}(x, y)$.
14. (a) Find the Fourier cosine and sine transform of $\mathrm{f}(x)=\mathrm{e}^{-\mathrm{ar}}$ for $x \geq 0$, $\mathrm{a}>0$. Hence deduce the integrals $\int_{0}^{\infty} \frac{\cos s x}{a^{2}+s^{2}} d s$ and $\int_{0}^{\infty} \frac{s \sin s x}{a^{2}+s^{2}} d s$.

OR

(b) (i) Find the Fourier transform of $\mathrm{f}(x)=\mathrm{e}^{-\frac{x^{2}}{2}}$ in $(-\infty, \infty)$.
(ii) Find the Fourier transform of $\mathrm{f}(x)=1-|x|$ if $|x|<1$ and hence find the

$$
\begin{equation*}
\text { value of } \int_{0}^{\infty} \frac{\sin ^{4} t}{t^{4}} d t \tag{8}
\end{equation*}
$$

15. (a) (i) Find the Z-transforms of $\cos \frac{n \pi}{2}$ and $\frac{1}{n(n+1)}$.
(ii) Using convolution theorem, evaluation $Z^{-1}\left\{\frac{z^{2}}{(z-a)^{2}}\right\}$.

OR
(b) (i) Find the inverse Z-transform of $\frac{z}{z^{2}-2 z+2}$ by residue method.
(ii) Solve the difference equation $y_{n+2}+y_{n}=2$, given that $y_{0}=0$ and $y_{1}=0$ by using Z-transforms.

