Reg. No. : \square

Question Paper Code : 21522

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester
Civil Engineering
M . 2211/MA 31/MA 1201 A/CK 201/10177 MA 301/080100008/080210001 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to all branches)
(Regulation 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A - }(10 \times 2=20 \text { marks })
$$

1. State the Dirichlet's conditions for Fourier series.
2. What is meant by Harmonic Analysis?
3. Find the Fourier Sine Transform of $e^{-3 x}$:
4. If $\mathcal{F}\{f(x)\}=F(s)$, prove that $\mathcal{F}\{f(a x)\}=\frac{1}{a} \cdot F\left(\frac{s}{a}\right)$.
5. Form the PDE from $(x-a)^{2}+(y-b)^{2}+z^{2}=r^{2}$.
6. Find the complete integral of $p+q=p q$.
7. In the one dimensional heat equation $u_{t}=c^{2} \cdot u_{x x}$, what is c^{2} ?
8. Write down the two dimensional heat equation both in transient and steady states.
9. Find $Z(n)$.
10. Obtain $Z^{-1}\left[\frac{z}{(z+1)(z+2)}\right]$.

PART B - $(5 \times 16=80$ marks $)$
11. (a) (i) Find the Fourier series of x^{2} in $(-\pi ; \pi)$ and hence deduce that

$$
\begin{equation*}
\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \frac{\pi^{4}}{90} \tag{8}
\end{equation*}
$$

(ii) Obtain the Fourier cosine series of $f(x)=\left\{\begin{array}{ll}k x, & 0<x<l / 2 \\ k(l-x), & l / 2<x<l\end{array}\right.$.
(b) (i) Find the complex form of Fourier series of $\cos a x$ in $(-\pi, \pi)$, where " a " is not an integer.
(ii) Obtain the Fourier cosine series of $(x-1)^{2}, 0<x<1$ and hence show that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$.
12. (a) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x|>a\end{array}\right.$ and hence find $\int_{0}^{\infty} \frac{\sin x}{x} d x$
(ii) Verify the convolution theorem under Fourier Transform, for $f(x)=g(x)=e^{-x^{2}}$.
Or
(b) (i) Obtain the Fourier Transform of $e^{-x^{2} / 2}$.
(ii) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$ using Parseval's identity.
13. (a) (i) Solve : $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
(ii) Solve : $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cdot \cos x$.

Or
(b) (i) Solve : $z=p x+q y+\sqrt{p^{2}+q^{2}+1}$.
(ii) Solve : $\left(D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) z=\sin (2 x+y)$.
14. (a) A tightly stretched string between the fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. If each of its points is given a velocity $k x(l-x)$, find the displacement $y(x, t)$ of the string.

Or
(b) An infinitely long rectangular plate is of width 10 cm . The temperature along the short edge $y=0$ is given by
$u=\left\{\begin{array}{ll}20 x, & 0<x<5 \\ 20(10-x), & 5<x<10\end{array}\right.$. If all the other edges are kept at zero temperature, find the steady state temperature at any point on it.
15. (a) (i) Find $Z(\cos n \theta)$ and hence deduce $Z\left(\cos \frac{n \pi}{2}\right)$.
(ii) Using Z-transform solve : $y_{n+2}-3 y_{n+1}-10 y_{n}=0, y_{0}=1$ and $y_{1}=0$.

Or

(b) (i) State and prove the second shifting property of Z-transform.
(ii) Using convolution theorem, find $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right]$.

