\square

Question Paper Code : 31522

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester
 Civil Engineering

MA 2211/MA 31/MA 1201 A/CK 201/10177 MA 301/080100008/080210001 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to all branches)
(Regulation 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20 \mathrm{marks})$

1. Find the value of a_{0} in the Fourier series expansion of $f(x)=e^{x}$ in $(0,2 \pi)$.
2. Find the half range sine series expansion of $f(x)=1$ in $(0,2)$.
3. Define self reciprocal with réspect to Fourier Transform.
4. Prove that $F[f(x-a)]=e^{i a s} F[f(x)]$.
5. Form a PDE by eliminating the arbitrary constants ' a ' and ' b ' from $z=a x^{2}+b y^{2}$.
6. Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial x}=0$.
7. Define steady state condition on heat flow.
8. An insulated rod of length $l \mathrm{~cm}$ has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. Find the steady state solution of the rod.
9. Find the Z-transform of $\frac{1}{n}$.
10. Find the inverse Z-transform of $\frac{z}{(z+1)^{2}}$.

$$
\begin{equation*}
\text { PART B }-(5 \times 16=80 \text { marks }) \tag{8}
\end{equation*}
$$

11. (a) (i) Find the Fourier Series Expansion of $f(x)=\left\{\begin{array}{l}1 \text { for } 0<x<\pi \\ 2 \text { for } \pi<x<2 \pi\end{array}\right.$.
(ii) Find the Fourier series expansion of $f(x)=\left\{\begin{array}{l}-x+1,-\pi<x<0 \\ x+1, \quad 0<x<\pi\end{array}\right.$

Or

(b) (i) Find the half range sine series of $f(x)=l x-x^{2}$ in $(0, l)$.
(ii) Find the first two harmonies of the Fourier series expansion for the following data.

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

12. (a) Find the Fourier transform of $f(x)= \begin{cases}1-x^{2}, & |x| \leq 1 \\ 0 & , \\ |x|>1\end{cases}$

Hence show that
(i) $\int_{0}^{\infty} \frac{\sin s-s \cos s}{s^{3}} \cos \left(\frac{s}{2}\right) d s=\frac{3 \pi}{16}$ and
(ii) $\int_{0}^{\infty} \frac{(x \cos x-\sin x)^{2}}{x^{6}} d x=\frac{\pi}{15}$.

Or
(b) (i) Using Fourier Cosine Transform, evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.
(ii) Find the function whose Fourier Sine Transform is $\frac{e^{-a s}}{s}(a>0)$.
13. (a) (i) Form the PDE by eliminating the arbitrary function ' f ' and ' g ' from $z=x^{2} f(y)+y^{2} g(x)$.
(ii) Solve $\left[D^{2}-D D^{\prime}-2 D^{\prime 2}\right] z=2 x+3 y+e^{2 x+4 y}$.

Or
(b) (i) Solve $\left(y^{2}+z^{2}\right) p-x y q+x z=0$.
(ii) Find the singular integral of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.
14. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y(x, 0)=K\left(l x-x^{2}\right)$. It is released from rest from this position. Find the expression for the displacement at any time ' t '.

Or
(b) Find the solution to the equation $\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$ that satisfies the conditions $u(0, t)=0, u(l, t)=0$, for $t>0$ and $u(x, 0)= \begin{cases}x, & 0 \leq x \leq l / 2 \\ l-x, & l / 2<x<l\end{cases}$
15. (a) (i) Find the Z-transform of $\frac{1}{(n+1)(n+2)}$.
(ii) Using Z-transform solve the difference equation $Y_{n+2}+2 Y_{n+1}+Y_{n}=n$ given $Y_{0}=0=Y_{1}$.

Or
(b) (i) Form the difference equation from $Y(n)=(A+B n) 2^{n}$.
(ii) Using convolution theorem find $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$.

