Lesson 9

Taylor's expansion for function of two variables

9.1 Introduction

Let $z=f(x, y)$ which is continuous, together with all its partial derivatives up to $(n+1)$-th order inclusive, in some neighborhood of a point (a, b). Then like a function of single variable we can represent $f(x, y)$ as sum of an n-th degree polynomial in power of $(x-a)$ and $(y-b)$ and some remainder. We consider here in case $n=2$ and show that $f(x, y)$ has of the form

$$
\begin{align*}
& f(x, y)=A_{0}+D(x-a)+E(y-b) \\
& +\frac{1}{2!}\left[A(x-a)^{2}+2 B(x-a)(y-b)+C(y-b)^{2}\right]+R_{2} \tag{1}
\end{align*}
$$

where A_{0}, D, E, A, B, C are independent of x and y, and R_{2} is the remainder, and it is very similar to function of single variable.

Let us apply the Taylor formula for function $f(x, y)$ of the variable y assuming x to be constant.

$$
f(x, y)=f(x, b)+\frac{y-b}{1} f_{y}(x, b)
$$

$$
\begin{equation*}
+\frac{(y-b)^{2}}{1.2} f_{y y}(x, b)+\frac{(y-b)^{3}}{1.2 .3} f_{y y y}\left(x, \eta_{1}\right) \tag{2}
\end{equation*}
$$

where $\eta_{1}=b+\theta_{1}(y-b), 0<\theta_{1}<1$. We expand the functions $f(x, b)$,
$f_{y}(x, b), f_{y y}(x, b)$ in a Taylor's series in powers of $(x-a)$
$f(x, b)=f(a, b)+\frac{x-a}{1} f_{x}(a, b)$
$+\frac{(x-a)^{2}}{1.2} f_{x x}(a, b)+\frac{(x-a)^{3}}{1.2 .3} f_{x x x}\left(\xi_{1}, b\right)$
where $\xi_{1}=x+\theta_{2}(x-a), 0<\theta_{2}<1$
$f_{y}(x, b)=f_{y}(a, b)+\frac{x-a}{1} f_{y x}(a, b)$
$+\frac{(x-a)^{2}}{1.2} f_{y x x}\left(\xi_{2}, b\right)$
where $\xi_{2}=x+\theta_{3}(x-a), 0<\theta_{3}<1$
$f_{y y}(x, b)=f_{y y}(a, b)+\frac{x-a}{1} f_{y y x}\left(\xi_{3}, b\right)$
where $\xi_{3}=x+\theta_{4}(x-a), 0<\theta_{4}<1$. Substituting expression (3), (4) and (5)
into formula (2), we get

$$
\begin{gathered}
f(x, y)=f(a, b)+\frac{x-a}{1} f_{x}(a, b)+\frac{(x-a)^{2}}{1.2} f_{x x}(a, b) \\
+\frac{(x-a)^{3}}{1.2 .3} f_{x x x}\left(\xi_{1}, b\right)+\frac{y-b}{1}\left[f_{y}(a, b)+\frac{x-a}{1} f_{y x}(a, b)\right. \\
\left.+\frac{(x-a)^{2}}{1.2} f_{y x x}\left(\xi_{2}, b\right)\right]+\frac{(y-b)^{2}}{1.2}\left[f_{y y}(a, b)\right. \\
\left.+\frac{x-a}{1} f_{y y x}\left(\xi_{3}, b\right)\right]+\frac{(y-b)^{3}}{1.2 .3} f_{y y y}\left(x, \eta_{1}\right)_{1}
\end{gathered}
$$

arranging the numbers as given in (1), we have

$$
\begin{gathered}
f(x, y)=f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b) \\
+\frac{1}{2!}\left[(x-a)^{2} f_{x x}(a, b)+2(x-a)(y-b) f_{x y}(a, b)\right. \\
\left.+(y-b)^{2} f_{y y}(a, b)\right]+\frac{1}{3!}\left[(x-a)^{3} f_{x x x} f\left(\xi_{1}, b\right)\right. \\
+3(x-a)^{2}(y-b) f_{x x y}\left(\xi_{2}, b\right)+3(x-a)(y-b)^{2} f_{x y y}\left(\xi_{3}, b\right) \\
\left.(y-b)^{3} f_{y y y}\left(a, \eta_{1}\right)\right]
\end{gathered}
$$

This is the Taylor's formula for $n=2$. The expression

$$
\begin{aligned}
& R_{2}=\frac{1}{3!}\left[(x-a)^{3} f_{x x x}\left(\xi_{1}, b\right)+3(x-a)^{2}(y-b) f_{x x y}\left(\xi_{2}, b\right)\right. \\
& \\
& \left.\quad+3(x-a)(y-b)^{2} f_{x y y}\left(\xi_{3}, b\right)+(y-b)^{3} f_{y y y}\left(a, \eta_{1}\right)\right]
\end{aligned}
$$

This is called the remainder. If we denote $x-a=\Delta x, y-b=\Delta y$, and

$$
\Delta \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}, R_{2} \text { becomes }
$$

$$
\begin{aligned}
& R_{2}=\frac{1}{3!}\left[\frac{\Delta x^{3}}{\Delta \rho^{3}} f_{x x x}\left(\xi_{1}, b\right)+3 \frac{\Delta x^{2} \Delta y}{\Delta \rho^{3}} f_{x x y}\left(\xi_{2}, b\right)\right. \\
& \left.+3 \frac{\Delta x \Delta y^{2}}{\Delta \rho^{3}} f_{x y y}\left(\xi_{3}, b\right)+\frac{\Delta y^{3}}{\Delta \rho^{3}} f_{y y y}\left(a, \eta_{1}\right)\right] \Delta \rho^{3} .
\end{aligned}
$$

Example 9.1: Find the remainder R_{2} of the function given by

$$
f(x, y)=\sin x \sin y \text { about }(0,0)
$$

Solution:

$$
\begin{gathered}
f(x, y)=f(0,0)+\left[x f_{x}(0,0)+y f_{y}(0,0)\right] \\
+\frac{1}{2!}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y} y(0,0)\right]+R_{2} .
\end{gathered}
$$

Where R_{2} is given by

$$
\begin{aligned}
& R_{2}=\frac{1}{3!}\left[(x-a)^{3} f_{x x x} f\left(\xi_{1}, b\right)+3(x-a)^{2}(y-b) f_{x x y}\left(\xi_{2}, b\right)\right. \\
&\left.+3(x-a)(y-b)^{2} f_{x y y}\left(\xi_{3}, b\right)+(y-b)^{3} f_{y y y}\left(a, \eta_{1}\right)\right] . \\
& f_{x}(x, y)=\cos x \sin y, f_{y}(x, y)=\sin x \cos y \\
& f_{x x}(x, y)=-\sin x \sin y, f_{x y}(x, y)=\cos x \cos y \\
& f_{y y}(x, y)=-\sin x \sin y, f_{y x}(x, y)=\cos x \cos y \\
& f_{x x x}=-\cos x \sin y, f_{x x y}=-\sin x \cos y \\
& f_{x y y}=-\cos x \sin y, f_{y y y}=-\sin x \cos y \\
& R_{2}=\frac{1}{3!}\left[0+3 x^{2} y\left(-\sin \left(x+\theta_{3} x\right)\right)\right] \\
&=-\frac{1}{2}\left[x^{2} y \sin \left(x+\theta_{3} x\right)\right]
\end{aligned}
$$

Questions: Answer the following question.

1. Expand $z=\sin x \sin y$ in powers of $\left(x-\frac{\pi}{4}\right)$ and $\left(y-\frac{\pi}{4}\right)$. Find the terms of the first and second orders and R_{2} (the remainder of second order).
2. Let $f(x, y)=e^{x} \sin y$. Expand $f(x+h, y+k)$ in powers of h and k and also find R_{2}.
3. Expand $x^{2} y+\sin y+e^{x}$ in powers of $(x-1)$ and $(y-\pi)$ through quadratic terms and write the remainder.
4. Expand $x^{3}-2 x y^{2}$ in Taylor's Theorem about $a=1, b=-1$.
5. Show that for $0<\theta<1$,
$e^{a x} \sin b y=b y+a b x y+\frac{1}{6}\left[\left(a^{3} x^{3}-3 a b^{2} x y^{2}\right) \sin (b \theta y)+\left(3 a^{2} b x^{2} y-b^{3} y^{3}\right) \cos (b \theta y)\right] e^{a \theta x}$.

Keywords: Taylor's polynomial

References

W. Thomas, Finny (1998). Calculus and Analytic Geometry, $6^{\text {th }}$ Edition, Publishers, Narsa, India.

Jain, R. K. and Iyengar, SRK. (2010), Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus $2^{\text {nd }}$ Edition, Publishers, PHI, India.
Piskunov, N. (1996). Differential and Integral Calculus Vol I, \& II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers,John Willey \& Sons, Singapore.

