
Module 1: Differential Calculus 

Lesson 9 

Taylor's expansion for function of two variables 

 

9.1 Introduction  

Let  which is continuous, together with all its partial derivatives up 

to -th order inclusive, in some neighborhood of a point . Then like 

a function of single variable we can represent  as sum of an -th degree 

polynomial in power of  and  and some remainder. We consider 

here in case  and show that  has of the form  

 

 
where  are independent of  and , and  is the remainder, and 

it is very similar to function of single variable. 

 

Let us apply the Taylor formula for function  of the variable  assuming 

 to be constant.  
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where , . We expand the functions , 

,  in a Taylor's series in powers of   

 

 
where ,   

 

 
where ,   

 
where , . Substituting expression (3), (4) and (5) 

into formula (2), we get  
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arranging the numbers as given in (1), we have  

  

  

  

 

  

 

This is the Taylor's formula for . The expression  
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This is called the remainder. If we denote , , and 

,  becomes  

  

  

 

Example 9.1: Find the remainder  of the function given by  

  

 

Solution:  

  

  

Where  is given by  
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Questions: Answer the following question. 

1. Expand yxz sinsin=  in powers of )
4

( π
−x  and )

4
( π
−y . Find the terms of    

the first and second orders and 2R  (the remainder of second order).  

2. Let yeyxf x sin=),( . Expand ),( kyhxf ++  in powers of h  and k  and  also find  

2R .  
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3. Expand 
xeyyx ++ sin2
 in powers of 1)( −x  and )( π−y  through quadratic terms 

and write the remainder.  

4. Expand 23 2xyx −  in Taylor’s Theorem about 1=a , 1= −b .  

5. Show that for 1<<0 θ ,         

.)](cos)(3)(sin)3[(
6
1=sin 33222233 xaax eybybybxaybxyabxaabxybybye θθθ −+−++
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