Lesson 7

Composite and Implicit Functions for Two Variables

7.1 Introduction

The chain rule works for functions of more than one variable. Consider the function $z=f(x, y)$ where $x=g(t)$ and $y=h(t)$, and $g(t)$ and $h(t)$ are differentiable with respect to t, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Suppose that each argument of $z=F(u, v)$ is a two-variable function such that $u=h(x, y)$ and $v=g(x, y)$, and that these functions are all differentiable. Then the chain rule would look like:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{\partial F}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \frac{\partial v}{\partial x} \\
& \frac{\partial z}{\partial y}=\frac{\partial F}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial F}{\partial v} \frac{\partial v}{\partial y} .
\end{aligned}
$$

If we consider $\vec{r}=(u, v)$ above as a vector function, we can use vector notation to write the above equivalently as the dot product of the gradient of F and a derivative of \vec{r} :

$$
\frac{\partial F}{\partial x}=\nabla F . \partial \vec{r}
$$

Partial and Total Increment: We consider a function $z=f(x, y)$, increase the independent variable x by Δx (keeping y fixed), then z will be increased: this
increase is called the partial increment with respect to x which we denote as $\Delta_{x} z$, so that

$$
\Delta_{x} z=f(x+\Delta x, y)-f(x, y) .
$$

Similarly we define $\Delta_{y} z$. If we increase the argument x by Δx and y by Δy, we get z a new increment Δz, which is called the total increment of z and defined by

$$
\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y) .
$$

It is noted that total increment is not equal to the sum of the partial increments, $\Delta z \neq \Delta_{x} z+\Delta_{y} z$. Let us assume that $f(x, y)$ has continuous partial derivatives at the point (x, y) under consideration. Express Δz in terms of partial derivatives. To do this we have

$$
\begin{gathered}
\Delta z=[f(x+\Delta x, y+\Delta y)-f(x, y+\Delta y)] \\
+[f(x, y+\Delta y)-f(x, y)]
\end{gathered}
$$

and using Lagrange mean value theorem separately

$$
\Delta z=\Delta x \frac{\partial f(\bar{x}, y+\Delta y)}{\partial x}+\Delta y \frac{\partial f(x, \bar{y})}{\partial y} .
$$

(where \bar{y} lies between y and $y+\Delta y$ and \bar{x} between x and $x+\Delta x$). As partial derivatives are continuous it follows that

$$
\Delta z=\frac{\partial f(x, y)}{\partial x} \Delta x+\frac{\partial f(x, y)}{\partial y} \Delta y+\psi_{1} \Delta x+\psi_{2} \Delta y .
$$

Where the quantities $\psi_{1}(x, y)$ and $\psi_{2}(x, y)$ approach zero as Δx and Δy approach zero.

Now we will derive the total differential of composite function.

Theorem 7.1: $f(x, y), g(r, s), h(r, s) \in C^{1}$

$$
\begin{gathered}
\Rightarrow \frac{\partial}{\partial r} f(g, h)=f_{1}(g, h) g_{1}(r, s)+f_{2}(g, h) h_{1}(r, s) \\
\frac{\partial}{\partial s} f(g, h)=f_{1}(g, h) g_{2}(r, s)+f_{2}(g, h) h_{2}(r, s) .
\end{gathered}
$$

We use this formula for the composite function $f(x, y), x=\phi(r, s), y=\psi(r, s)$

$$
\begin{aligned}
& \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}
\end{aligned}
$$

Example 7.1: $f(x, y)=x y, f_{1}=y, f_{2}=x$

$$
\begin{aligned}
& \frac{\partial}{\partial r} g h=\frac{\partial}{\partial r} f(g(r, s), h(r, s)) \\
& =y g_{1}+x h_{1} \\
& =h g_{1}+g h_{1}
\end{aligned}
$$

We can generalize this results. If $w=F(z, u, v, s)$ is a function of four arguments z, u, v, s and each of them depends on x and y, then

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}+\frac{\partial F}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial F}{\partial s} \frac{\partial s}{\partial x} \\
& \frac{\partial w}{\partial y}=\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}+\frac{\partial F}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial F}{\partial v} \frac{\partial v}{\partial y}+\frac{\partial F}{\partial s} \frac{\partial s}{\partial y} .
\end{aligned}
$$

If a function $z=F(x, y, u, v)$, where y, u, v depend on a single independent variables x : $y=f(x), u=\phi(x), v=\psi(x)$, then z is actually a function of one variable x only.

Hence,

$$
\begin{gathered}
\frac{d z}{d x}=\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x} \\
+\frac{\partial F}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial F}{\partial v} \frac{\partial v}{\partial x} \\
=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x} \\
+\frac{\partial F}{\partial u} \frac{d u}{d x}+\frac{\partial F}{\partial v} \frac{d v}{d x}
\end{gathered}
$$

This formula is known as the formula for calculating the total derivative $\frac{d z}{d x}$ (in contrast to the partial derivative $\frac{\partial z}{\partial x}$).

Example 7.2: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ of $z=\ln \left(u^{2}+v\right), u=e^{x+y^{2}}, v=x^{2}+y$.

Solution:

$$
\begin{gathered}
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x} . \\
\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial z}{\partial \mathrm{v}} \frac{\partial v}{\partial y} . \\
\frac{\partial u}{\partial x}=e^{x+y^{2}}, \frac{\partial u}{\partial y}=2 y e^{x+y^{2}}, \frac{\partial v}{\partial x}=2 x, \frac{\partial v}{\partial y}=1, \frac{\partial z}{\partial u}=\frac{2 u}{u^{2}+v}, \frac{\partial z}{\partial v}=\frac{1}{u^{2}+v} .
\end{gathered}
$$

So

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =\frac{2 u}{u^{2}+v} e^{x+y^{2}}+\frac{1}{u^{2}+v} 2 x \\
& =\frac{2}{u^{2}+v}\left(u e^{x+y^{2}}+x\right) \\
\frac{\partial z}{\partial y} & =\frac{2 u}{u^{2}+v} 2 y e^{x+y^{2}}+\frac{1}{u^{2}+v} \\
& =\frac{1}{u^{2}+v}\left(4 u y e^{x+y^{2}}+1\right)
\end{aligned}
$$

In these expressions, we have to substitute $e^{x+y^{2}}$ and $x^{2}+y$ for u and v respectively.

Example 7.3: Find the total derivative of $z=x^{2}+\sqrt{y}, y=\sin x$

Solution:

$$
\frac{\partial z}{\partial x}=2 x, \frac{\partial z}{\partial y}=\frac{1}{2 \sqrt{y}}, \frac{d y}{d x}=\cos x .
$$

$$
\frac{d z}{d x}=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} \frac{d y}{d x}
$$

$$
\begin{gathered}
=2 x+\frac{1}{2 \sqrt{y}} \cos x \\
=2 x+\frac{1}{2 \sqrt{\sin x}} \cos x .
\end{gathered}
$$

7.1.1 Let us find the the total differential of the composite function $z=F(u, v)$ and $u=\phi(x, y)$ and $v=\psi(x, y)$, we know the total differential

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y .
$$

Now substitute the expression $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial x}$ defined in the above composite function, after simplification we obtain

$$
d z=\frac{\partial z}{\partial u} d u+\frac{\partial z}{\partial v} d v .
$$

Where $d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y$ and $d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y$

Example 7.4: Find the total differential of the composite function $z=u^{2} v^{3}$, $u=x^{2} \sin y, v=x^{3} e^{y}$.

Solution:

$$
\begin{aligned}
& d u=2 x \sin y d x+x^{2} \cos y d y \\
& d v=3 x^{2} e^{y} d x+x^{3} e^{y} d y \\
& d z=\frac{\partial z}{\partial u} d u+\frac{\partial z}{\partial v} d v
\end{aligned}
$$

$$
=2 u v^{3} d u+3 u^{2} v^{2} d v
$$

$$
\begin{aligned}
= & 2 u v^{3}\left(2 x \sin y d x+x^{2} \cos y d y\right) \\
& +3 u^{2} v^{2}\left(3 x^{2} e^{y} d x+x^{3} e^{y}\right) d y \\
= & \left(2 u v^{3} \cdot 2 x \sin y+3 u^{2} v^{2} \cdot 3 x^{2} e^{y}\right) d x \\
+ & \left(2 u v^{3} x^{2} \cos y+3 u^{2} v^{2} x^{3} e^{y}\right) d y
\end{aligned}
$$

7.2 Composite and implicitly Functions:

Let some function y of x be defined by the equation $F(x, y)=0$. We shall prove the following theorem.

Theorem 7.2 Let a function y of x be defined implicitly by the equation

$$
\begin{equation*}
F(x, y)=0 \tag{7.1}
\end{equation*}
$$

where $F(x, y), \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ are continuous in the domain D containing the point (x, y), which satisfies (7.1), also $\frac{\partial F}{\partial y}=0$ at the point (x, y). Then

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\frac{\partial x}{\partial x}}}{\frac{\partial F}{\partial y}}
$$

Proof. Given $F(x, y)$ is a function of two variables x, and y and y is again a function of x so that F is a composite function of x. Its derivative with respect to x is

$$
\begin{aligned}
& \frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x} \\
& =\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{\mathrm{~d} y}{d x}
\end{aligned}
$$

As F is considered as a function of x alone, which is identically zero. So we have

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

which implies $\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$.

Example 7.5: An equation is given that connects x and y

$$
\begin{gathered}
e^{y}-e^{x}+x y=0 \\
\text { find } \frac{d y}{d x}
\end{gathered}
$$

Solution:

$F(x, y)=e^{y}-e^{x}+x y, \frac{\partial F}{\partial x}=-e^{x}+y, \frac{\partial F}{\partial y}=e^{y}+x$, by the above theorem we obtain $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{-e^{x}+y}{e^{y}+x}$.

Questions: Answer the following questions.

1.

Find $\frac{d f}{d t} \quad$ at $\quad t=0 \quad$ where

$$
f(x, y)=x^{3}+y^{3}, x=e^{t}, y=\cos t
$$

2.

If

$$
z=\mathrm{f}(\mathrm{x}, \mathrm{y})
$$

$x=\mathrm{e}^{2 \mathrm{u}}+\mathrm{e}^{-2 \mathrm{v}}, y=\mathrm{e}^{-2 \mathrm{u}}+\mathrm{e}^{2 \mathrm{v}}$, then show that
3.

$$
\frac{\partial f}{\partial u}+\frac{\partial f}{\partial \mathrm{v}}=2\left[\mathrm{x} \frac{\partial f}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial f}{\partial \mathrm{y}}\right] .
$$

4.

Find

$\frac{d y}{d x}$
when

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+\tan ^{-1}\left(\frac{y}{x}\right)=0
$$

5.

Find $\frac{d y}{d x}$, when $\mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=a$, a any constant, $\mathrm{x}, \mathrm{y}>0$.

Keywords: Chain Rule, Composite Function

References

W. Thomas, Finny (1998). Calculus and Analytic Geometry, $6^{\text {th }}$ Edition, Publishers, Narsa, India.

Jain, R. K. and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus $2^{\text {nd }}$ Edition, Publishers, PHI, India.
Piskunov, N. (1996). Differential and Integral Calculus Vol I, \& II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers,John Willey \& Sons, Singapore.

