
Module 3: Ordinary Differential Equations

Lesson 40

Series Solutions about a Regular Singular Point (Cont...)

In this lesson we continue series solution about a singular point. We shall demonstrate the

method with some useful differential equations.

40.1 Example Problems

40.1.1 Problem 1

Find one series solution of the differential equation

4x2y′′ − 4x2y′ + (1− 2x)y = 0,

Solution: Note thatx = 0 is a singular point. Let us try

y = xr
∞
∑

k=0

akx
k =

∞
∑

k=0

akx
k+r,

wherer is a real number, not necessarily an integer. Again if such a solution exists, it may

only exist for positivex. First let us find the derivatives

y′ =

∞
∑

k=0

(k + r) akx
k+r−1,

y′′ =

∞
∑

k=0

(k + r) (k + r − 1) akx
k+r−2.

Plugging into our equation we obtain

4

∞
∑

k=0

(k + r) (k + r − 1) akx
k+r − 4

∞
∑

k=0

(k + r) akx
k+r+1 + (1− 2x)

∞
∑

k=0

akx
k+r = 0

Splitting the last series into two series we get

∞
∑

k=0

4(k + r) (k + r − 1) akx
k+r −

∞
∑

k=0

4(k + r) akx
k+r+1 +

∞
∑

k=0

akx
k+r − 2

∞
∑

k=0

akx
k+r+1 = 0
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Re-indexing leads to

∞
∑

k=0

4(k + r) (k + r − 1) akx
k+r −

∞
∑

k=1

4(k + r − 1) ak−1x
k+r +

∞
∑

k=0

akx
k+r −

∞
∑

k=1

2ak−1x
k+r = 0

Combining different series into one series

(

4r(r − 1) + 1
)

a0 +
∞
∑

k=1

(

(

4(k + r) (k + r − 1) + 1
)

ak −
(

4(k + r − 1) + 2
)

ak−1

)

xk+r.

The indicial equation is given by

4r(r − 1) + 1 = 0

It has a double root atr = 1

2
. All other coefficients ofxk+r also have to be zero so

(

4(k + r) (k + r − 1) + 1
)

ak −
(

4(k + r − 1) + 2
)

ak−1 = 0.

If we plug in r = 1

2
and solve forak, we get

ak =
4(k + 1

2
− 1) + 2

4(k + 1

2
) (k + 1

2
− 1) + 1

ak−1 =
1

k
ak−1.

Let us seta0 = 1. Then

a1 =
1

1
a0 = 1, a2 =

1

2
a1 =

1

2
,

a3 =
1

3
a2 =

1

3 · 2 , a4 =
1

4
a3 =

1

4 · 3 · 2 , . . .

In general, we notice that

ak =
1

k(k − 1)(k − 2) · · ·3 · 2 =
1

k!
.

In other words,

y =
∞
∑

k=0

akx
k+r =

∞
∑

k=0

1

k!
xk+1/2 =

√
x

∞
∑

k=0

1

k!
xk =

√
xex.

So we have one solution of the given differential equation. Here we have written the series

in terms of elementary functions. However this is not alwayspossible.
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40.1.2 Problem 2

Solve theBessel’s equationof orderp.

x2y′′ + xy′ +
(

x2 − p2
)

y = 0. (40.1)

where2p is not an integer.

Solution: We take the following generalized power series

y =

∞
∑

m=0

cmxk+m, c0 6= 0. (40.2)

which implies

y′ =
∞
∑

m=0

cm(k +m)xk+m−1, y′′ =
∞
∑

m=0

cm(k +m)(k +m− 1)xk+m−2

Substitution fory, y′, y′′ in (40.2) gives

x2
∞
∑

m=0

cm(k +m)(k +m− 1)xk+m−2 + x

∞
∑

m=0

cm(k +m)xk+m−1 + (x2 − n2)

∞
∑

m=0

cmxk+m = 0

Combining the first two series we obatin

∞
∑

m=0

cm

{

(k +m)(k +m− 1) + (k +m)− p2
}

xk+m +
∞
∑

m=0

cmxk+m+2 = 0

Further simplifications leads to

∞
∑

m=0

cm(k +m+ p)(k +m− p)xk+m +

∞
∑

m=0

cmxk+m+2 = 0 (40.3)

Equating the smallest power ofx to zero, we get the indicial equation as

c0(k + p)(k − p) = 0, i.e, (k + p)(k − p) = 0, as c0 6= 0.

So the roots of indicial equation arek = p,−p. Next equating to zero the coefficient of

xk+1 in (40.3) gives

c1(k + 1 + p)(k + 1− p) = 0, so that c1 = 0 for k = p and − p.
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Finally equating to zero the coefficient ofxk+m in (40.3) gives

cm(k +m+ p)(k +m− p) + cm−2 = 0

⇒ cm =
1

(k +m+ p)(p− k −m)
cm−2.

⇒ cm =
1

(k +m+ p)(p− k −m)
cm−2. (40.4)

Puttingm = 3, 5, 7, . . . in (40.4) and usingc1 = 0, we find

c1 = c3 = c5 = c7 = . . . = 0.

Puttingm = 2, 4, 6, . . . in (40.4), we find

c2 =
1

(k + 2 + p)(p− k − 2)
c0

c4 =
1

(k + 4 + p)(p− k − 4)
c2 =

1

(k + 4 + p)(p− k − 4)(k + 2 + p)(p− k − 2)
c0

and so on. Putting these values in (40.2) and also replacingc0 by 1, we get

y =

[

1 +
x2

(k + 2 + p)(p− k − 2)
+

x4

(k + 4 + p)(p− k − 4)(k + 2 + p)(p− k − 2)
+ . . .

]

Replacingk by p and−p in the above equation gives

y1 = xp
[

1− x2

4(1 + p)
+ . . .

]

= xp
∞
∑

k=0

(−1)kx2k

22kk!(k + p)(k − 1 + p) · · · (2 + p)(1 + p)

y2 = x−p

[

1− x2

4(1− p)
+ . . .

]

= x−p
∞
∑

k=0

(−1)kx2k

22kk!(k − p)(k − 1− p) · · · (2− p)(1− p)

Therefore when2p is not an integer, we have the general solution to Bessel’s equation of

orderp

y = c1y1(x) + c2y2(x),

wherec1 andc2 are arbitrary constants.
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Remark: We define the Bessel functions of the first kind Bessel function of the first

kind of orderp and−p as

Jp(x) =
1

2pΓ(1 + p)
y1 =

∞
∑

k=0

(−1)k

k!Γ(k + p+ 1)

(x

2

)2k+p
,

J−p(x) =
1

2−pΓ(1− p)
y2 =

∞
∑

k=0

(−1)k

k!Γ(k − p+ 1)

(x

2

)2k−p
.

As these are constant multiples of the solutions we found above, these are both solutions to

Bessel’s equation of orderp. Whenp is not an integer,Jp andJ−p are linearly independent.

When2p is an integer we obtain

Jp(x) =

∞
∑

k=0

(−1)k

k!(k + p)!

(x

2

)2k+p
.

In this case it turns out that

Jp(x) = (−1)nJ−p(x),

and so in that case we do not obtain a second linearly independent solution.

40.1.3 Problem 3

Find one series solution ofxy′′ + y′ + y = 0.

Solution: The indicial equation is

r(r − 1) + r = r2 = 0.

This equation has only one rootr = 0. The recursion equation is

(n+ r)2an = −an−1, n ≥ 1.

The solution witha0 = 1 is

an(r) = (−1)n
1

(r + 1)2(r + 2)2 · · · (r + n)2

Settingr = 0 gives the solution

y1 =

∞
∑

n=0

(−1)n
xn

(n!)2
.
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