Module 3: Ordinary Differential Equations

L esson 40

Series Solutionsabout a Regular Singular Point (Cont...)

In this lesson we continue series solution about a singuiigut p\We shall demonstrate the
method with some useful differential equations.

40.1 Example Problems

40.1.1 Problem 1

Find one series solution of the differential equation

4x?y" — 42y’ + (1 — 2x)y = 0,

Solution: Note thatr = 0 is a singular point. Let us try

o0 o0
y=ua" Z apa® = Z apatT,
k=0 k=0

wherer is a real number, not necessarily an integer. Again if sudiien exists, it may
only exist for positiver. First let us find the derivatives
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Plugging into our equation we obtain

(©.9] o o
42(1@ +7) (k4r—1)apzh™ — 4Z(k + ) apa™ T 4 (1 — 22) Z apz™T =0
k=0 k=0 k=0

Splitting the last series into two series we get

oo o0

o0 oo
Z Adk+r)(k+r—1) apatT — Z Ak +r) apa T 4 Z apztT — 2 Z aprF Tl =0
k=0 k=0 k=0 k=0
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Re-indexing leads to

o0 o0
24 (k+7)( k+r—1)akxk+r—z4(k‘—l—r—1)ak 1xk+r+2akx 22% 2= 0
k=0 k=1 k=0

Combining different series into one series
(4r(r —1) + aO‘l‘Z( (k+r)(k+r—1)+1)ap— (4k+7r—1)+2) ak—l) 2R

The indicial equation is given by
dr(r—1)+1=0
It has a double root at= 3. All other coefficients of:**" also have to be zero so
(4k+r)(k+r—1)+1)ap— (4(k+7r—1)+2) ap_1 = 0.
If we plug inr = § and solve fow,,, we get

Ah+5—1)+2
Ak+3) (k+3-1)+1

1
ap = k-1 = 7 Ak—1-

Letus setiy = 1. Then

1 1 1
a1 = —ag =1, &22—&1=§>
1 1 1 1
aa = —q9 = —— asL = —Qaa =
37 3% T 3Ty 1T T 3y

In general, we notice that

aj = = .

k(k—1)(k—2)---3-2 K

In other words,

o
1
y = Zakka o LR/2 ‘/_Z _x _
k=0

k=0

So we have one solution of the given differential equatioareHve have written the series
in terms of elementary functions. However this is not alwagssible.



Series Solutions about a Regular Singular Point (Cont...)

40.1.2 Problem 2

Solve theBessel's equationf orderp.
22y’ +ay' + (22 — p*) y = 0. (40.1)

where2p is not an integer.

Solution: We take the following generalized power series

y=> ez c #£0. (40.2)
m=0
which implies
y/ _ Z Cm(]{?+m)l'k+m_1, y// _ Z cm(l{:+m)(l€—l—m . 1)xk+m—2
m=0 m=0

Substitution fory, v/, v” in (40.2) gives

o 0o 0
z? Z em(k+m)(k +m — 1)$k+m_2 +zx Z e (k4 m)xk+m_1 + (22 —n?) Z et =0
m=0 m=0 m=0

Combining the first two series we obatin

Z cm{(k +m)(k+m—1)+ (k+m) —p2}xk’+m i Z mek+m+2 —0
m=0 m=0
Further simplifications leads to

Equating the smallest power oo zero, we get the indicial equation as

colk+p)k—p) =0, ie, (k+p)(k—p) =0, as cg#0.

So the roots of indicial equation ake= p, —p. Next equating to zero the coefficient of
zF*1in (40.3) gives

ci(k+14+p)k+1—p)=0, sothat ¢; =0 for k=p and — p.
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Finally equating to zero the coefficient &ft™ in (40.3) gives

cm(k+m+p)(k+m—p)+cp_2=0

1
:> m: m—2-
¢ (k:+m+p)(p—k—m)C 2

1
= 2. 40.4
- (k:+m+p)(p—k—m)C 2 (40.4)

Puttingm = 3,5,7,...in (40.4) and using; = 0, we find
01203205207:...:0.

Puttingm = 2,4,6,...1in (40.4), we find

1
(k+2+p)(p—k—2

Co = )Co

1 1
ktdtp)p—k-H> " hrd+po-—k-HE+2+pp-k-2)"

Cq4 =

and so on. Putting these values in (40.2) and also replagibg1, we get

ZL’Q 1’4
= |1
! [ RRCES Rl

+(k+4+p)(p—k—4)(k:+2+p)(p—k—2)+"'

Replacingk by p and—p in the above equation gives

2

k 2k
-1
N (-1)*x

y1 = 2P {1—4(”]9) } :xp;)Qkak[(k+p)(k—1+p)'--(2+p)(1+p)

x2 (—1)kx2k

yo = 7P {1_m+...] :x_pkz_oQ?kk!(k—p)(k‘—l_p)"'(2_p)(1_p)

Therefore wherzp is not an integer, we have the general solution to Besseliatean of
orderp
y = ayi(z) + coya (),

wherec; andc; are arbitrary constants.
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Remark: We define the Bessel functions of the first kind Bessel funofithe first
kind of orderp and —p as

1 & (- 2\ 2kt
(@) = 21 +p) 7t~ kz_o KD(k+p+1) (E) ’

_ 1 IR VA
J—p<x)_2_pf(1—p)y2_§k‘!l—‘( “p+1) (E) '

As these are constant multiples of the solutions we foundeglteese are both solutions to
Bessel's equation of order Whery is not an integer/, and.J_, are linearly independent.
When2p is an integer we obtain

X (=1)F a2kt
W= a)

In this case it turns out that
Jp(x) = (=1)"J_p(),

and so in that case we do not obtain a second linearly indepetsblution.

40.1.3 Problem 3

Find one series solution afy” + ¢’ + y = 0.

Solution: The indicial equation is
r(r—1)+r:r2:O.
This equation has only one root= 0. The recursion equation is
(n+ T)zan = —ap_1, n>1.

The solution withag = 1 iS

1

) = ) R T o )

Settingr = 0 gives the solution

Y1 = Z(_l)n (,::;2
n=0
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