
Module 3: Ordinary Differential Equations

Lesson 39

Series Solutions about a Regular Singular Point

39.1 Introduction

In this lesson we discuss series solution about a singular point. In particular, the power

series method discussed in last lessons will be generalized. The generalized power series

method is also known as Frobenius method.

Let us consider a simple first order differential equation2xy′ − y = 0 and try to apply the

power series method discussed in the last lessons. Note thatx = 0 is a singular point. If

we plug in

y =

∞
∑

k=0

akx
k,

into the given differential equation, we obtain

0 = 2xy′ − y = 2x

(

∞
∑

k=1

kakx
k−1

)

−
(

∞
∑

k=0

akx
k

)

= a0 +
∞
∑

k=1

(2kak − ak) x
k.

First,a0 = 0. Next, the only way to solve0 = 2kak − ak = (2k − 1) ak for k = 1, 2, 3, . . . is

for ak = 0 for all k. Therefore we only get the trivial solutiony = 0. We need a nonzero

solution to get the general solution.

39.2 Frobenius Method

Consider the differential equation of the formy′′+ p(x)y′+ q(x)y = 0. Note thatxp(x) and

x2q(x) are analytic atx = 0. We try a series solution of the from

y = xr
∞
∑

n=0

cnx
n = xr(c0 + c1x+ c2x

2 + . . .), wherec0 6= 0
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The derivative ofy with respect tox are given by

y′ =
∞
∑

n=0

(n+ r)cnx
n+r−1

y′′ =
∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r−2

Also, we can write power series corresponding toxp(x) andx2q(x) as

xp(x) =
∞
∑

n=0

anx
n and x2q(x) =

∞
∑

n=0

bnx
n

The given differential equation can be rewritten as

y′′ +
xp(x)

x
y′ +

x2q(x)

x2
y = 0

Substituting all values ofy, y′, y′′, xp(x) and x2q(x) series into the above differential

equation we get

∞
∑

n=0

(n+r)(n+r−1)cnx
n+r−2+

∞
∑

n=0

anx
n−1×

∞
∑

n=0

(n+r)cnx
n+r−1+

∞
∑

n=0

bnx
n−2×

∞
∑

n=0

cnx
n+r = 0

Multiplying by x2 we get

∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r +

∞
∑

n=0

anx
n ×

∞
∑

n=0

(n+ r)cnx
n+r +

∞
∑

n=0

bnx
n ×

∞
∑

n=0

cnx
n+r = 0

We can now equate coefficients of various powers ofx to zero to form a system of equa-

tions involving unknown coefficientscn. Equating the coefficient ofxr we obtain

[r(r − 1) + a0r + b0]c0 = 0

Sincec0 6= 0, we obtain

r2 + (a0 − 1)r + b0 = 0 (39.1)

The above quadratic equation is known as theindicial equationof the given differential

equation. The general solution of the given differential equation depends on the roots of

the indicial equation. There are three possible general cases:
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39.2.1 Case I: The indicial equation has two real roots which do not differ by an

integer

Let r1 andr2 are the roots of the indicial equation. Then the two linearlyindependent

solution will follow from

y1(x) = xr1
∞
∑

n=0

cnz
n y2(x) = xr2

∞
∑

n=0

cnz
n

where c0, c1, . . . are coefficients corresponding tor = r1 and c0, c1, . . . are coefficients

corresponding tor = r2. The general solution will be of the formy = ay1 + by2, wherea

andb are arbitrary coefficients.

39.2.2 Case II: The indicial equation has a doubled root

If the indicial equation has a doubled rootr, then we find one solution

y1 = xr
∞
∑

k=0

akx
k,

and then obtain another solution by plugging

y2 = xr
∞
∑

k=0

bkx
k + (ln x)y1,

into the given equation and solving for the constantsbk.

39.2.3 Case III: The indicial equation has two real roots which differ by an integer

If the indicial equation has two real roots such thatr1 − r2 is an integer, then one solution

is

y1 = xr1
∞
∑

k=0

akx
k,

and the second linearly independent solution is of the form

y2 = xr2
∞
∑

k=0

bkx
k + C(ln x)y1,

where we plugy2 into the given equation and solve for the constantsbk andC.
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Remark 1: Note that the case-I also includes complex numbers because in that case

r1 − r2 will be a complex number which cannot be equal to a real integer.

Remark 2: Note that the mai idea is to find at least one Frobenius-type solution. If

we are lucky and find two, we are done. If we only get one, we either use the ideas above

or the method of variation of parameters to obtain a second solution.

39.3 Working Rules

Now we summarize the working steps of the Frobenius method:

1. We seek a Frobenius-type solution of the formy =
∞
∑

k=0

akx
k+r.

2. We plug thisy into the given differential equation.

3. The obtained series must be zero. Setting the first coefficient (usually the coefficient

of xr) in the series to zero we obtain theindicial equation, which is a quadratic

polynomial inr.

4. If the indicial equation has two real rootsr1 andr2 such thatr1− r2 is not an integer,

then find two linearly independent solutions according to Case-I.

5. If the indicial equation has a doubled rootr, or the indicial equation has two real

roots such thatr1 − r2 is an integer then follow Case-II or Case-III accordingly.

39.3.1 Example

Find the power series solutions aboutx = 0 of

4xy′′ + 2y′ + y = 0

Solution: Clearly,x = 0 is a regular singular point. Comparing withy′′+p(x)y′+q(x)y = 0

we havexp(x) = 1/2 andx2q(x) = x/4. We substitute Frobenius series

y = xr
∞
∑

n=0

cnx
n (39.2)
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into the differential equation to get

∞
∑

n=0

(n + r)(n+ r − 1)cnx
n+r−2 +

1

2x

∞
∑

n=0

(n + r)cnx
n+r−1 +

1

4x

∞
∑

n=0

cnx
n+r = 0

Multiplying by x2 we obtain

∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r +

1

2

∞
∑

n=0

(n+ r)cnx
n+r +

1

4

∞
∑

n=0

cnx
n+r+1 = 0 (39.3)

Equating coefficients ofxr to zero and notingc0 6= 0 we obtain indicial equation

r(r − 1) +
1

2
r = 0

which has rootsr = 1/2, 0. These roots are unequal and do not differ by an integer. To

obtain the recurrence relation, we equate to zero the coefficient ofxn+r in Equation (39.3)

and obtain

(n+ r)(n+ r − 1)cn +
1

2
(n + r)cn +

1

4
cn−1 = 0

Corresponding tor = 1/2 we get

(4n2 + 2n)cn + cn−1 = 0 ⇒ cn = − cn−1

2n(2n + 1)
⇒ cn = −c0

(−1)n

(2n+ 1)!

Substituting these values in (39.2), we get one solution as

y1 = c0
√
x

∞
∑

n=0

(−1)n

(2n+ 1)!
xn = c0

(√
z − (

√
z)3

3!
+

(
√
z)5

5!
+ . . .

)

= sin
√
z

To obtain the second solution we user = 0 to get

(4n2 − 2n)cn + cn−1 = 0 ⇒ cn = − cn−1

2n(2n− 1)
⇒ cn =

(−1)n

(2n)!

Hence the second solution is

y2 = c0

∞
∑

n=0

xn = cos(
√
z)

The general solution is given as

y = b cos(
√
z) + b cos(

√
z)

wherea andb are arbitrary constants.

5



Series Solutions about a Regular Singular Point
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