
Module 3: Ordinary Differential Equations

Lesson 38

Series Solution about an Ordinary Point (Cont.)

In the last lesson we have discussed series solution of the homogeneous differential equa-

tions. In this lesson we demonstrate the method by using a couple of basic examples. For

demonstration we take first example of a differential equation with constant coefficients

and then some more involved examples will be discussed.

38.1 Example Problems

38.1.1 Problem 1

Determine a series solution to y′′ − y = 0.

Solution: Suppose that the series solution is of the form

y(x) =
∞
∑

n=0

cnxn

Differentiatingy, we have

y′(x) =

∞
∑

n=1

ncnxn−1 and y′′(x) =

∞
∑

n=2

n(n− 1)cnxn−2

Substituting these into the differential equation, we have

∞
∑

n=2

n(n− 1)cnxn−2 −

∞
∑

n=0

cnxn = 0

Re-indexing the first sum

∞
∑

n=0

(n + 2)(n+ 1)cn+2xn −

∞
∑

n=0

cnxn = 0

This implies
∞
∑

n=0

[(n+ 2)(n+ 1)cn+2 − cnxn]xn = 0
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Since the series is always equal to0 then each coefficient must be zero. Thus we have

(n+ 2)(n+ 1)cn+2 − cn = 0 (38.1)

This can be rewritten in the form of recurrence relation as

cn+2 =
cn

(n+ 2)(n+ 1)
(38.2)

Puttingn = 0, 1, 2 . . ., we get

c2 =
c0
2!
, c3 =

c1
3!
, c4 =

c0
4!
, c5 =

c1
5!
, . . .

In general, we have

c2k =
c0

(2k)!
, c2k+1 =

c1
(2k + 1)!

. . . for k = 1, 2, . . . .

Putting these values into the series and collecting thec0 andc1 terms we get

y(x) = c0

(

1 +
x2

2!
+ . . .+

x2k

(2k)!
+ . . .

)

+ c1

(

x+
x3

3!
+ . . .+

x2k+1

(2k + 1)!
+ . . .

)

This can be further rewritten in summation form as

y(x) = c0

∞
∑

k=0

x2k

(2k)!
+ c1

∞
∑

k=0

x2k+1

(2k + 1)!

This is the desired series solution. It should be noted that this series solution can be

rewritten into the form of well known solutiony(x) = c1e
x+c2e

−x of the given differential

equation as

c1e
x + c2e

−x = c1

(

1 + x+
x2

2!
+ . . .

)

+ c2

(

1− x+
x2

2!
+ . . .

)

This can be rewritten as

c1e
x + c2e

−x = (c1 + c2)

(

1 +
x2

2!
+ . . .

)

+ (c1 − c2)

(

x+
x3

3!
+ . . .

)

Denoting(c1 + c2) =: c0 and(c1 − c2) =: c1 we get

c1e
x + c2e

−x = c0

∞
∑

k=0

x2k

(2k)!
+ c1

∞
∑

k=0

x2k+1

(2k + 1)!

This proves that both representations are equivalent.
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38.1.2 Problem 2

Find the series solution, about x = 0, of the equation (1− x)2y′′ − 2y = 0 in powers of x.

Solution: Sincex = 0 is an ordinary point and we can therefore get two linearly indepen-

dent solution by substituting

y =
∞
∑

n=0

cnx
n.

After substitution we get

(1− 2x+ x2)

∞
∑

n=2

n(n− 1)cnx
n−2

− 2

∞
∑

n=0

cnx
n = 0,

which leads to
∞
∑

n=2

n(n− 1)cnx
n−2

− 2
∞
∑

n=2

n(n− 1)cnx
n−1 +

∞
∑

n=2

n(n− 1)cnx
n
− 2

∞
∑

n=0

cnx
n = 0

In order to write the series in terms the coefficients ofxn we shift the summation index as
∞
∑

n=0

(n + 2)(n+ 1)cn+2x
n
− 2

∞
∑

n=1

n(n + 1)cn+1x
n +

∞
∑

n=2

n(n− 1)cnx
n
− 2

∞
∑

n=0

cnx
n = 0

The sum in second and third series can also start from 0 without changing the series. This

leads to
∞
∑

n=0

[(n+ 2)(n+ 1)cn+2 − 2n(n+ 1)cn+1 + n(n− 1)cn − 2cn] x
n = 0

This can be further simplified as
∞
∑

n=0

(n+ 1) [(n+ 2)cn+2 − 2ncn+1 + (n− 2)cn] x
n = 0

Equating the coefficients we obtain the recurrence relation

(n + 2)cn+2 − 2ncn+1 + (n− 2)cn = 0.

Puttingn = 0, 1, 2, . . . we get

c2 = c0, c3 =
1

3
(2c0 + c1) =: c, c4 = c, c5 = c . . .

Hence the series solution becomes

y = c0 + c1x+ c0x
2 + c

∞
∑

n=3

xn.
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38.1.3 Problem 3

Find the power series solution of the equation (x2 + 1)y′′ + xy′ − xy = 0 in powers of x

(i.e. about x = 0).

Solution: Clearlyx = 0 is an ordinary point of the given differential equation. Therefore,

to find the series solution, we take power series

y = c0 + c1x+ c2x
2 + c3x

3 + . . . =

∞
∑

n=0

cnx
n. (38.3)

Differentiating twice in succession, (38.3) gives

y′ =

∞
∑

n=1

ncnx
n−1 and y′′ =

∞
∑

n=1

n(n− 1)cnx
n−2 (38.4)

Putting the above value ofy, y′ andy′′ in the given differential equation, we obtain

(x2 + 1)

∞
∑

n=2

n(n− 1)cnx
n−2 + x

∞
∑

n=1

ncnx
n−1

− x

∞
∑

n=0

ncnx
n = 0

⇒

∞
∑

n=2

n(n− 1)cnx
n +

∞
∑

n=2

n(n− 1)cnx
n−2

−

∞
∑

n=1

ncnx
n
−

∞
∑

n=0

cnx
n+1 = 0

This leads to

∞
∑

n=2

n(n− 1)cnx
n +

∞
∑

n=0

(n+ 2)(n+ 1)cn+2x
n +

∞
∑

n=1

ncnx
n
−

∞
∑

n=1

cn−1x
n = 0

Finally we have the identity

2c2 + (6c3 + c1 − c0)x+

∞
∑

n=2

[n(n− 1)cn + (n+ 2)(n+ 1)cn+2 + ncn − cn−1]x
n = 0.

Equating the constant term and the coefficients of various powers ofx, we get

c2 = 0, 6c3 + C1 − c0 = 0 so thatc3 = (c0 − c1)/6

and the recurrence relation

cn+2 =
cn−1 − n2cn

(n+ 1)(n+ 2)
, for all n ≥ 2. (38.5)
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Puttingn = 2 in (38.5),c4 = (1/12)c1, asc2 = 0.

Puttingn = 3 in (38.5),c5 = −
9c3
(20) = −

3
40(c0 − c1)

Putting the above values ofc2, c3, c4, c5, . . . ets. in (38.3), we have

y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + . . .∞

⇒ y = c0 + c1x+ (1/6)(c0 − c1)x
3 + (1/12)c1x

4
− (3/40)(c0 − c1)x

5 + . . .∞

This can be rewritten as

y = c0

(

1 +
1

6
x3 −

3

40
x5 + . . .

)

+ c1

(

x−
1

6
x3 +

1

12
x4 +

3

40
x5 − . . .

)

,

which is the required solution nearx = 0, wherec0 andc1 are arbitrary constants.

38.1.4 Problem 4

Find the power series solution of the initial value problem xy′′ + y′ + 2y = 0, y(1) = 1,

y′(1) = 2 in powers of (x− 1).

Solution: Sincex = 1 is an ordinary point of the given differential equation, we find

series solution

y =

∞
∑

n=0

cn(x− 1)n ⇒ y′ =

∞
∑

n=1

ncn(x− 1)n−1 andy′′ =
∞
∑

n=2

n(n− 1)cn(x− 1)n−2 (38.6)

Substitutingy andy′ in the given differential equation we obtain

[(x− 1) + 1]
∞
∑

n=2

n(n− 1)cn(x− 1)n−2 +
∞
∑

n=1

ncn(x− 1)n−1 + 2
∞
∑

n=0

cn(x− 1)n = 0

This leads to

∞
∑

n=2

n(n−1)cn(x−1)n−1+
∞
∑

n=2

n(n−1)cn(x−1)n−2+
∞
∑

n=1

ncn(x−1)n−1+2
∞
∑

n=0

cn(x−1)n = 0

Shifting summation index of the first three terms we get

∞
∑

n=1

n(n + 1)cn+1(x− 1)n +

∞
∑

n=0

[(n+ 1)(n+ 2)cn+2 + (n+ 1)cn+1 + 2cn](x− 1)n = 0
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Equating the coefficients to zero we get

2c2 + c1 + c0 = 0 ⇒ c2 = −
c1 + c0

2

cn+2 = −
(n + 1)2cn+1 + 2cn
(n+ 1)(n+ 2)

, for all n ≥ 1

Using initial conditions in Equation (38.6) we getc0 = 1 andc1 = 2. Using these values

we obtain

c2 = −2, c3 =
2

3
, c4 = −

1

6
, c5 =

1

15
, . . .

Putting these constants in series we get the desired solution as

y = 1 + 2(x− 1)− 2(x− 1)2 + (2/3)(x− 1)3 − (1/6)(x− 1)4 + (1/15)(x− 1)5 + . . .
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