
Module 3: Ordinary Differential Equations

Lesson 35

Equations Reducible to Linear Differential Equations with Constant
Coefficients

In this lesson we shall study two special forms of linear equations with variable coeffi-

cients which can be reduced to linear differential equations with constant coefficients by

a suitable substitution. Those special forms which we studyhere are called Cauchy-Euler

homogeneous linear differential equations and Legendre’shomogeneous linear differen-

tial equations.

35.1 Cauchy-Euler Homogeneous Linear Differential Equation

A linear differential equation of the form

a0x
n d

ny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ . . .+ any = F (x), (35.1)

wherea1, a2, . . . , an are constants andF is either a constant or a function ofx only, is

called Cauchy-Euler homogeneous linear differential equation. Note that the index ofx

and order of derivative is same in each term of such equations.

Using the symbolsD(= d/dx), D2(= d2/dx2), . . . , Dn(= dn/dxn), the Equation (35.1) be-

comes

(a0x
nDn + a1x

n−1Dn−1 + a2x
n−2Dn−2 + ...+ an)y = F (x) (35.2)

The above equation can be reduced to linear differential equation with constant coeffi-

cients by substituting

x = ez, or ln x = z, so that
dz

dx
=

1

x
(35.3)

Using chain rule for differentiation we obtain

dy

dx
=

dy

dz

dz

dx
=

1

x

dy

dz



Equations Reducible to Linear Differential Equations with Constant Coefficients

Defining
d

dz
=: D1, we have

x
dy

dx
=

dy

dz
⇔ xDy = D1y

Similarly, for the second order derivative

d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dx

(

1

x

dy

dz

)

= −
1

x2
dy

dz
+

1

x

d

dx

(

dy

dz

)

=−
1

x2
dy

dz
+

1

x

d

dz

(

dy

dz

)

dz

dx
= −

1

x2
dy

dz
+

1

x2
d2y

dz2

Thus, we have

x2
d2y

dx2
=

d2y

dz2
−

dy

dz
⇒ x2D2y = D1(D1 − 1)y.

Similarly, x3D3y = D1(D1 − 1)(D1 − 2)y and so on. In general, we have the relationship

xnDn = D1(D1 − 1)(D1 − 2) . . . (D1 − n+ 1)y

Substituting the above values ofx, xD, x2D2, . . . , xnDn in the Equation (35.1), we get

[a0D1(D1 − 1) . . . (D1 − n + 1) + . . .+ an−2D1(D1 − 1) + an−1D1 + an] y = F (ez) (35.4)

The Equation (35.4) is a linear differential equation with constant coefficients which can

solved with the methods discussed in previous lessons. Finally, by replacingz by ln x we

obtain the desired solution of the given differential equation.

35.2 Example Problems

35.2.1 Problem 1

Solve the differential equation(x2D2 + xD − 4)y = 0.

Solution: Substitutingx = ez ⇒ ln x = z ⇒ xD = D1, x2D2 = D1(D1 − 1), the given

equation reduces to

[D1(D1 − 1) +D1 − 4] y = 0 ⇒ (D2

1 − 4)y = 0
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The roots of the corresponding characteristic equation arem = 2,−2. The required solu-

tion of the transformed equation is

y = c1e
2z + c2e

−2z

Puttinglog x = z, we have the desired solution as

y = c1x
2 + c2x

−2.

Herec1 andc2 are arbitrary constants.

35.2.2 Problem 2

Find the general solution of the differential equation(x2D2 + y)y = 3x2.

Solution: Substitutingx = ez, the given equation reduces to

(D1(D1 − 1) + 1)y = 3e2z ⇒ (D2

1 −D1 + 1)y = 3e2z

The characteristic equation of this differential equationis

(m2 −m+ 1) = 0 ⇒ m = (1± i
√
3)/2

The complimentary function is

C.F. = ez/2
[

c1 cos
(

z
√
3/2

)

+
(

c1 sin z
√
3/2

)]

Substitutingz = ln x, we get

C.F. =
√
x
[

c1 cos
(

ln x
√
3/2

)

+ c1 sin
(

ln x
√
3/2

)]

The particular integral of the transformed equation is

P.I. =
1

D2
1
−D1 + 1

3e2z =
1

22 − 2 + 1
3e2z = e2z

Hence, the desired solution of the given differential equation is

y =
√
x
[

c1 cos
(

ln x
√
3/2

)

+ c1 sin
(

ln x
√
3/2

)]

+ x2
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35.3 Legendre’s Homogeneous Linear Differential Equations

A linear differential equation of the form is

[(a+ bx)na0D
n + a1(a + bx)n−1Dn−1 + a2(a + bx)n−2Dn−2 + ...+ an]y = F (x), (35.5)

wherea, b, a1, a2, ..., an are constants, andF is either a constant or a function ofx only,

is called a Legendre’s homogeneous linear differential equation. Note that the index of

(a + bx) and the order of derivative is same in each term of such equation. To solve the

Equation (35.5), we introduce a new independent variablez such that

a+ bx = ez, or ln(a+ bx) = z, so that b/(a+ bx) = dz/dx. (35.6)

Now, for the first order derivative we have

dy

dx
=

dy

dz

dz

dx
=

b

(a + bx)

dy

dz

This implies

(a+ bx)
dy

dx
= b

dy

dz
⇔ (a+ bx)Dy = bD1y

Similarly for the second order derivative we get

d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dx

(

b

(a+ bx)

dy

dz

)

This can be further simplified to get

d2y

dx2
=−

b2

(a+ bx)2
dy

dz
+

b

(a+ bx)

d

dx

(

dy

dz

)

=−
b2

(a+ bx)2
dy

dz
+

b

(a+ bx)

d

dz

(

dy

dz

)

dz

dx

Substitutingdz/dx from Equation (35.6), we obtain

d2y

dx2
= −

b2

(a + bx)2
dy

dz
+

b2

(a + bx)2
d2y

dz2

This gives us

(a + bx)2
d2y

dx2
= b2

(

d2y

dz2
−

dy

dz

)

⇔ (a+ bx)2D2y = b2D1(D1 − 1)y
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In general, we have

(a+ bx)nDn = bnD1(D1 − 1)(D1 − 2) . . . (D1 − n+ 1)y

Substituting the above values of(a + bx), (a + bx)D, (a + bx)2D2, . . . , (a + bx)nDn in the

Equation (35.5), we get the following linear differential equation with constant coeffi-

cients

[

a0b
nD1(D1 − 1)...(D1 − n + 1) + ... + an−2b

2D1(D1 − 1) + an−1bD1 + an
]

y = F

(

ez − a

b

)

The methods of solving this transformed equation are same asdiscussed in previous sec-

tion.

35.3.1 Example

Solve the differential equation

(1 + x)4
d3y

dx3
+ 2(1 + x)3

d2y

dx2
− (1 + x)2

dy

dx
+ (1 + x)y =

1

(1 + x)

Solution: UsingD =
d

dx
and dividing both sides by(x+1), the given differential equation

can be rewritten as

[

(1 + x)3D3 + 2(1 + x)2D2 − (1 + x)D + 1
]

y = (1 + x)−2.

This is the Legendre’s homogeneous linear equation which can be solved by substituting

(1 + x) = ez ⇔ ln(1 + x) = z

This substitution readily implies

(1 + x)D = D1, (1 + x)2D2 = D1(D1 − 1), (1 + x)3D3 = D1(D1 − 1)(D1 − 2)

The given differential equation reduces to

[D1(D1 − 1)(D1 − 2) + 2D1(D1 − 1)−D1 + 1] y = e−2z

or
(

D3

1 −D2

1 −D1 + 1
)

y = e−2z
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The characteristic equation of the corresponding homogeneous equation is

(

m3 −m2 −m+ 1
)

y = 0

The roots of the characteristics equations arem = 1, 1,−1. Hence the complimentary

function of the transformed differential equation is

C.F. = (c1 + c2z)e
z + c3e

−z

The particular integral of the transformed differential equation can be found as

P.I. =
1

(D3
1
−D2

1
−D1 + 1)

e−2z

=
1

−23 − 22 + 2 + 1
e−2z

=−
1

9
e−2z

Hence the general solution of the transformed differentialequation is

y = (c1 + c2z)e
z + c3e

−z −
1

9
e−2z

Replacingz by ln(1 + x) we obtain the desired solution of the given differential equation

y = [c1 + c2 ln(1 + x)] (1 + x) +
c3

(1 + x)
−

1

9

1

(1 + x)
.
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