Lesson 3

Indeterminate forms ; L'Hospital's Rule

3.1 Introduction

Consider the following limits $\lim_{x\to 4} \frac{x^2 - 16}{x-4}$ and $\lim_{x\to\infty} \frac{4x^2 - 5x}{1-3x^2}$

In the first limit if we put x = 4 we will get $\frac{0}{0}$ and in the second limit if we

"plugged" in infinity we get $\frac{1}{-\infty}$ (recall that as x goes to infinity a polynomial

will behave in the same fashion that it's largest power behaves). Both of these are called Indeterminate form.

3.1.1 Indeterminate forms

First limit can be found by the factorizing the numerator cancelling the common factor. That is

$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$
$$= \lim_{x \to 4} \frac{(x - 4)(x + 4)}{x - 4}$$
$$= \lim_{x \to 4} (x + 4)$$
$$= 8$$

The second limit can be evaluated as:

$$\lim_{x \to \infty} \frac{4x^2 - 5x}{1 - 3x^2}$$
$$= \lim_{x \to \infty} \frac{4 - \frac{5}{x}}{\frac{1}{x^2} - 3}$$
$$= -\frac{4}{3}$$

However what about the following two limits. $\lim_{x\to 0} \frac{\sin x}{x}$ and $\lim_{x\to\infty} \frac{e^x}{x^2}$. This first is a $\frac{0}{0}$ indeterminate form, but we can't factor this one. The second is an $\frac{\infty}{\infty}$

indeterminate form, but we can't just factor an x^2 out of the numerator. Does

there exists some method to evaluate the limits? The answer is yes. By (L'Hospital's Rule).

Suppose that we have one of the following cases,

have,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ or } \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$$

where \boldsymbol{a} can be any real number, infinity or negative infinity. In these cases we

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Theorem 3.1: Suppose the functions f(x) and g(x) in [a,b], satisfy the

Cauchy Theorem and f(a) = g(a) = 0, then if the ratio $\frac{f'(x)}{g'(x)}$ has a limit as

 $x \to a$, there also exists $\lim_{x \to a} \frac{f(x)}{g(x)}$, and $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$.

Proof.: On the interval [a, b] take some point $x \neq a$. Applying the Cauchy's

mean value theorem we have

$$\frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

where ξ is a number lies between a and x. But it is given that f(a) = g(a) = 0

and so

$$\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}$$
(1)

If $x \to a$, then $\xi \to a$, since ξ lies between x and a. Suppose if

 $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A, \text{ by (1) } \lim_{\xi \to a} \frac{f'(\xi)}{g'(\xi)} \text{ exists and is equal to } A. \text{ Hence}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(\xi)}{g'(\xi)}$$

$$= \lim_{\xi \to a} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$

and, finally,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Note 3.1: The theorem also holds for the case where the functions f(x) and

g(x) are not defined at x = a, but $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. We can

make them to be continuous at x = a by redefine $f(a) = \lim_{x \to a} f(x) = 0$,

 $g(a) = \lim_{x \to a} g(x) = 0$, since $\lim_{x \to a} \frac{f(x)}{g(x)}$ does not depend on whether the

function f(x) and g(x) are defined at x = a.

Note 3.2: If f'(a) = g'(a) = 0 and the derivatives f'(x) and g'(x) satisfy the

conditions that we imposed by the theorem on the functions f(x) and g(x),

then applying the L'Hospital rule $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \lim_{x\to a} \frac{f''(x)}{g''(x)}$, and so forth.

Note 3.3: If g'(x) = 0, but f'(x) = 0, then the theorem is applicable to the

reciprocal ratio $\frac{g(x)}{f(x)}$, which tends to zero as $x \to a$. Hence, the ratio $\frac{f(x)}{g(x)}$ tends to

infinity.

Example 3.1: $\lim_{x \to 0} \frac{e^{x} - e^{-x} - 2x}{x - \sin x} = \lim_{x \to 0} \frac{e^{x} + e^{-x} - 2}{1 - \cos x}$

$$= \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x}$$

$$=\frac{2}{1}=2.$$

Note 3.4: The L'Hospital rule is also applicable if $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to\infty} g(x) = 0$.

Put $x = \frac{1}{z}$, we see that $z \to 0$ as $x \to \infty$ and therefore $\lim_{z\to 0} f(\frac{1}{z}) = 0$, and

 $\lim_{z\to 0} g(\frac{1}{z}) = 0$. Applying the L'Hospital rule to the ratio

$$\frac{f(\frac{1}{2})}{g(\frac{1}{2})}$$
, we find that

which proves the results.

We also stated in earlier that if both f(x) and g(x) approaching infinity as

 $x \rightarrow a$ (or $x \rightarrow \infty$), the L'Hospital rule is also applied.

Example 3.2: Find $\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x} (\frac{\infty}{\infty})$

Solution:

Taking derivative both numerator and denominator five times we obtain: Ans: 3

Other Indeterminate forms :

The other indeterminate forms reduce to the following cases. (a) $0.\infty$ (b) 0^0 (c)

 $\infty^{0}(d) 1^{\infty}(e) \infty - \infty.$

(a) Let
$$\lim_{x\to a} f(x) = 0$$
, $\lim_{x\to a} g(x) = \infty$, it is required to find

$$\lim_{x\to a} [f(x)g(x)],$$

$\lim_{x \to a} [f(x)g(x)]$

$$=\lim_{x\to a}\frac{f(x)}{\frac{1}{g(x)}}$$

or
$$f(x)g(x) = \frac{g(x)}{\frac{1}{f(x)}}$$
 If $\lim f(x) = \infty, x \to a \& \lim g(x) = 0, x \to a$

which is $(\frac{0}{0})$ - form or one can write

$$\lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}}$$

Example 3.3

$$\lim_{x \to 0} x^n \ln x = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x^n}}$$

$$= \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{n}{x^{n+1}}} = \lim_{x \to 0} \frac{x^n}{n} = 0$$

b) Let
$$\lim_{x\to a} f(x) = 0$$
, $\lim_{x\to a} g(x) = 0$, it is required to find

 $\lim_{x\to a} [f(x)]^{g(x)}$. Put $y = [f(x)]^{g(x)}$. Taking logarithms of both sides of it, we

have

$$\ln y = g(x)[\ln f(x)]$$

$$\lim_{x \to a} \ln y = \lim_{x \to a} y$$

(by the continuity of $\ln y$) and if $\ln \lim_{x\to a} y = b \Rightarrow e^b = \lim_{x\to a} y$.

Similarly we can find the Indeterminate form $\infty^0, 1^\infty$

Example 3.4: $\lim_{x\to 0} x^x$ Solution: Put $y = x^x$,

 $\underset{x \to 0}{\lim \ln y} = \underset{x \to 0}{\lim x \ln x}$

$$=\lim_{x\to 0}(x\ln x)=\lim_{x\to 0}\frac{\ln x}{\frac{1}{x}}$$

So $\lim_{x\to 0} y = e^0 = 1$.

Example 3.5: Find the $\lim_{x\to 0} \left(\frac{1}{x}\right)^{\tan x}$

Ans: 1

Example 3.6 Using Taylor's formula compute

$$\lim_{x \to 0} \frac{x - \sin x}{e^x - 1 - x - \frac{x^2}{2}}$$

Ans: 1

Questions: Answer the following questions.

Evaluate the following limits :

1. $\lim_{x \to 1} \frac{x-1}{x^{n}-1}$ 2. $\lim_{x \to 0} \frac{e^{x^{2}}-1}{\cos x-1}$ 3. $\lim_{x \to 0} \frac{\sin x}{\sqrt{1-\cos x}}$ 4. $\lim_{x \to 0} \frac{e^{y}+\sin y-1}{\ln(1+y)}$

5.
$$\lim_{x \to 1} \frac{\ln(x-1) - x}{\tan \frac{\pi}{2x}}$$

6.
$$\lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right]$$

7.
$$\lim_{x\to 0} (cotx)^{\frac{1}{\ln x}}$$

8. $\lim_{x\to 0} \left(\frac{1}{x}\right)^{tanx}$

Ans.: 1. 1, 2. -2, 3. Limit does not exist, 4. 2, 5. 0, 6. $\frac{1}{2}$, 7. $\frac{1}{6}$ & 8. 1

Keywords: Indeterminate forms ; L'Hospital's Rule.

References

W. Thomas, Finny (1998). Calculus and Analytic Geometry, 6th Edition,

Publishers, Narsa, India.

Jain, R. K. and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers, John Willey & Sons, Singapore.