Module 3: Ordinary Differential Equations

L esson 28

Exact Differential Equation of First Order

This lesson provides an overview of exact differential eéguma A necessary condition
for a differential equation to be exact will be derived. Tliffierent solution techniques
will be discussed. Several examples to clarify the idealbeikupplemented.

28.1 Exact Differential Equation of First Order

If M andN are functions ofr andy, the equationV/dz + Ndy = 0 is called exact when
there exists a functioyi(z, y) such that

d(f(x,y)) = Mdz + Ndy,

or equivalently

ﬁolx + ﬁoly = Mdx + Ndy.
dy ox

28.1.1 Theorem

The necessary and sufficient condition for the differergtplation

Mdz + Ndy =0 (28.1)
to be exactis
oM  ON
o = or (28.2)

Proof: First we proof that the condition (28.2) is necessary. Tow@roe let the Equation
(28.1) to be exact. Then, by definition, there exi&ts y) such that

9 o+ ﬁdy = Mdx + Ndy. (28.3)
dy Ox
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Equating coefficients afz anddy in Equation (28.3), we get

=9 (28.4)
dy
N9 (28.5)

Ox
To eliminate the unknowrf(z,y) from above equations, we assume thatzhd order
partial derivatives of are continuous. We now differentiate (28.4) and (28.5fw:rand

y respectively as
oM O*f ON  O°f
Oy  Oydr’ Or  Oydx
This implies
oM 0N
Oy o

Thus, if (28.1) is exact)/ and N satisfy (28.2).
Now we show that the condition is sufficient. Suppose (28aj$rand show that (28.1)

is exact. For this we find a functiof(z, y) such that
d(f(z,y)) = Mdx + Ndy.

Let g(z,y) = [ Mdx be the partial integral o8/ such thatg—g = M. We first prove that
X

(N — @) Is function ofy only. This is clear because

dy
O (y_09\_ON _ 9
ox oy)  Or  Oxdy

2 2
Assuming&c;y = ;;gx and using Equation (28.2) we get
2
0 (N @) _ON 0%y

o _&y _%_&y@x
_ON 8(89)_8_N_8_M_0
 ox oy

S ox Oy o
Take, f(z,y) = g(z,y) + [(N — g—g)dy. Hence taking total differentiation of this equation

gives
99 99 4w+ 99 4y 1 Ny — g—zdy,

df = dg + (N — Zydy =
f =dg + ( ay)y pe o
%9\ 4w + Ndy = Mdz + Ndy.

= (==

ox
Thus, if Equation (28.2) is satisfied, Equation (28.1) is xaceequation.
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28.2 Example Problems

28.2.1 Problem 1

Solve(z? — 4xy — 2y?)dx + (y* — 4oy — 22%)dy =0 .

Solution: Comparing the given equation wittidz + Ndy = 0, we have

M = (22 — dzy — 2¢%), N = (y? — dzy — 22?)
Therefore
OM 4y = N
ay )
Hence, the given equation is exact and hence there existetdn f (z, y) such that
_of, of . _
d(f(xz,y)) = axdx + ayaly = Mdz + Ndy

which implies

LMy and vy

Integration of the first of above equations with respeat gives

1
f= §x3 — 2x2y — 2y29: + c1(y)

wherec; (y) is an arbitrary function of only. Differentiating the abov¢ with respect to
y and usingg—‘g = N(z,y) we get

0
0_f = 207 —day + i (y) = +y° — day — 227
Y
This implies
3
Y
Al) =y" = aly) =5 +o

Hence the solution is given by

flz,y) =cs =2 —6bay(z+y)+y° =c

Herec,y, c3 andc are constants of integration.
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28.2.2 Problem 2

Determine whether the differential equation+ siny)dz + (z cosy — 2y)dy = 0 is exact
and solve it.

Solution: For given equation we have

M(z,y) = (x+siny) and N(z,y) = (xcosy — 2y) (28.6)
Now we check
oMo
oy Y= Bs

Hence the given differential equation is exact. For thetsmiuve seek a functiori(z, y)

so that

of . of
%—(x%—smy) and 8—y—(xcosy 2y)

From the first relation we get

2
T .
flz,y) = 5 +xsiny + c1(y)

Differentiating w.r.t.y and using the second relation of (28.6) we get
zeosy+c(y) =zcosy—2y = dy)=-2u=c1(y)=—1y*+

Therefore, we have
2

f(x,y) = % +xsiny -y + ¢
Then the solution of the given differential equation

2
X .
flz,y)=c3 = ?+xsmy—y2:c.

28.2.3 Problem 3

Solve the differential equatiaiay?s — 2y3)dx + (4y3 — 6y’x + 2y2?)dy
Solution: First we check the exactness of the equation by

M AN
T Apy — 6yt = =
gy =0y =
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So the equation is exact. Then, there exists a fungtieny) such that

of _ oo o3 of _ 3 9 2
ax—(2yx 2¢°) and 0y_(4y 6y“x + 2yz°)
This gives
0
fla) = WPt =20 +aly) = G = (250 = 6my®) +l(0)
This implies

dly) =4y = al) =y'+e

Hence the solution is

flz,y)=c3 = y2x2 — Qxy?’ + y4 =c.

28.2.4 Problem 4

Solve that the differential equatidbry + y?)dr + (2% + zy)dy = 0. is not exact and hence
it cannot be solve by the method discussed above.

Solution: For the given differential equation we have

8—M =3z + 2y, and 3_N =22 + y;
dy ox
Sinceaﬁ—M = %—N the given equation is not exact.
Y T

Now we see that it cannot be solved by the procedure desqriigetusly where we seek
a functionf such that

of _ 3zy +y> and Of _ 2y Ty (28.7)
ox oy

Integration of the first relation gives

3
fla,y) = §x2y +2y? + c1(y)

wherec;(y) is an arbitrary function of) only. Now we differentiate the above equation
with respect tg; and set the resulting expression equalg’tery from the second relation
of (28.7) as

3
§x2 + 22y + ¢ (y) = 2° + xy



Exact Differential Equation of First Order

This provides

A(y) = ot T
Since the right side of the above depends @s well as ony, it is impossible to solve this
equation fore; (). Thus there is ng(x, y) exists and hence the given differential equation

cannot be solved in this way.
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