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Lesson-21 

Triple Integration 

 

21.1 Introduction  

If F(x, y, z) is the function defined on a bounded region D in space (a solid ball 

or truncated cone, for example of something resembling a swiss cheese, or a 

finite union of such objects) then the integral of F over D defined in the 

following way. 

 

We partition a rectangular region about D into rectangular cells by planes 

parallel to the co-ordinate planes, as shown in Fig. 

 

The cells have dimensions x∆ by y∆  by z∆ . We number the cells that lie inside 

D in some order 1 2, ,......., nV V V∆ ∆ ∆ , 

choose a point ( , , )k k kx y z  in each kV∆ , and form the sum 
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If F is continuous and the bounding surface of D is made of smooth surfaces 

joined along continuous curves, then as ,x y∆ ∆  and z∆ all approach zero the 

sum Sn will approach all limit. 

 

lim ( , , )n
D

S F x y z dV= ∫∫∫  

 

We call this limit the triple integral of F over D. The limit also exists for some 

discontinuous functions. 



Triple Integration 
 

 

Triple integrals share many algebraic properties with double and single 

integrals. Writing F  by ( , , )F x y z  and G  for ( , , )G x y z , we have the following 

 

1. ( )
D V

k F dV k F dV any number k=∫∫∫ ∫∫∫  

2. ( )
D D D

F G dV F dV G dV± = ±∫∫∫ ∫∫∫ ∫∫∫  

3. 0 0
D

F dV if F in D≥ ≥∫∫∫  

4. 
D D

F dV G dV if F G on D≥ ≥∫∫∫ ∫∫∫  

 

If the domain D  of a continuous function F  is partitioned by smooth surface 

into a finite number of cells  1 2, ,...., nD D D  , then 

 

5. 
1 2

.....
nD D D D

F dV F dV F dV F dV= + + +∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫  

 

The triple integral Evaluation is hardly evaluated directly from its definition as a 

limit. Instead, one applies a three-dimensional version of Fubin’s theorem to 

evaluate the integral by repeated single integrations.  

 

For example, suppose we want to integrate a continuous function   F(x, y, z) 

over a region D that is bounded below by a surface z = f1(x, y) above by the 

surface   

z = f2(x, y) ,  and on the side by a cylinder C parallel to the  z – axis (Fig. 2). Let 

R denote the vertical projection of D onto the xy-plane enclosed by C. The 

integral of F over D is then evaluated as  
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f x y

D R f x y

F x y z dV F x y z dz dy dx=∫∫∫ ∫∫ ∫ -------------- (21.1) 

 

If we omit the parenthesis .The  z-limits of integration indicate that for every  

(x, y) in the region R, z may extend from the lower surface z = f1(x, y)  to the 

upper surface z = f2(x, y). The y – and x - limits of integration have not given 

explicitly in Eq (21.1) but are to be determined in the usual way from the 

boundaries of  R. 

 

We will find the equation of the boundary of  R by eliminating  z between the 

two equations z = f1(x, y)  and  z = f2(x, y). This gives  

 

f2(x, y) = f1(x, y), 

 

an equation that contains no z and that defines the boundary of  R in the xy - 

plane. 
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Fig.12 
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To give the z -limits of integration in any particular instance we may use a 

procedure like the one for double integrals. We imagine a line L through a point 

(x, y) in R and parallel to the z-axis. As z increases, the line enters D at z = f1(x, 

y) and leaves D at z = f2(x, y).  These give the lower and upper limits of the 

integration with respect to z . The result of this integration is now a function of  

x and  y alone, which we integrate over R, giving limits in the familiar way.  

 

 

 

 

 

 

 

 

 

Example 21.1 Find the volume enclosed between the two surfaces z = x2+3y2  

and  

 z = 8-x2-y2.  

 

Solution: The two surfaces intersect on the surface   

 

x2+3y2  = 8-x2-y2  

        or x2+2y2  = 4 

 

which is elliptic . 

So the volume of the surface is 

 

Leaves D at z = f2(x, y) 

Enters D at z = f1(x, y) 

Fig. 12 
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As we know, there are sometimes two different orders in which the single 

integrations that evaluate a double integral may be worked (but not always). For 

triple integral there are sometimes (but not always) as many as six workable 

orders of integration. The next example shows an extreme case in which all six 

are possible. 

 

Example 21.2 Each of the following integrals gives the volume of the solid 

shown  
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 in Fig 3. 

 

 

                                                                              

 

 

 

Fig 3. 
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EXERCISES 

 

1. Write six different iterated triple integrals for the volume of the rectangular 

solid in the first octant bounded by the co-ordinate planes and the planes x = 1, 

y = 2, 

 z = 3. Evaluate one of the integrals. 

 

2. Write six different intersected triple integrals of the volume in the first octant 

enclosed by the cylinder x2 + z2 = 4 and the plane y = 3. Evaluate one of the 

integrals.  

 

x 

z 

y 
y + z =1 

2 
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3. Write an iterated triple integrals in the order dz dy dx for  the volume of the 

region bounded below by the xy-plane and above by the paraboloid z = x2+ y2 

and lying inside the cylinder x2 + y2 = 4. 

 

4. Rewrite the integral  
2

11 1

1 0

y

x

dz dy dx
−

−
∫ ∫ ∫  as an equivalent integrated integral in the 

order. 

a) dy dz dx    b) dy dx dz     c) dx dy dz     d) dx dz dy     e) dz dx dy 

 

Ans.: 1.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

, , , ,dz dy dx dz dxdy dxdy dz dy dxdz dxdz dy∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ , 

the value of each integral is 3, 2. 
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, ,
x x x
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− − −
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z z x
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− − −

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ . Value of each integral is 

12π .  

3. 
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∫ ∫ ∫  & 4.  
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