
Module 2: Integral Calculus 
 

Lesson 20 

Double Integration 

 

20.1 Introduction 

In applications of calculus we have seen with integrals of functions of a single 

variable. The integral of a function y = f(x) over an interval [a, b] is the limit of 

approximating sums 
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f x dx f c x

→∞
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= ∆∑∫ ------------ (20.1) 

 

Where  0 1 2 1..... ,n k k ka x x x x b x x x+= ≤ ≤ ≤ ≤ = ∆ = −  and ck is the any point 

from the interval [xk, xk+1] . The limit in (20.1) is taken as the length of the longest 

subinterval approaches zero.  The limit is guaranteed to exist if  f  is continuous 

and also exists when f  is bounded and has only finitely many points of 

discontinuity in [a, b] . There is no loss in assuming the intervals [xk, xk+1] to have 

common length
b ax

n
−

∆ = , and limit may thus obtain by letting 0x∆ = as n →∞ . 

If  f(x) > 0, then ( )
b

a
f x dx∫   from x = a and x = b, but in general the integral has 

many other important interpretations (distance, volume, arc length, surface area, 

moment of inertia, mass, hydrostatic pressure, work) depending on the nature and 

interpretation of  f .  

 



Double Integration 

In this Lesson we shall see that integrals of functions of two or more variables 

which are called multiple integrals and defined I much the same way as integrals of 

functions of single variable. 

 

Double Integrals: Here we define the integral of a function f(x, y) of two variables 

over a rectangular region in xy-plane. We then show how such an integral is 

evaluated and generalize the definition to include bounded regions of a more 

general nature.  

 

Double Integrals over Rectangles: 

 

 

 

 

 

 

 

 

 

Suppose that f(x, y) is defined on a rectangular region R defined by  

 : ,R a x b c y d≤ ≤ ≤ ≤  

(see the figure 1.) 

 

We imagine R to be covered by a network of lines parallel to x-axis and y-axis, as 

shown in Fig 1. These lines divide R into small pieces of area  
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A x y∆ = ∆ ∆  

 

We number these in some order 

  

1 2, ,...., nA A A∆ ∆ ∆ , 

 

Choose a point (xk, yk) in each piece of kA∆ and from the sum  
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=

= ∆∑ ------------------- (20.2) 

 

If  f  is continuous throughout R, then we define mesh width to make both x∆ and 

y∆  go to zero the sums in (2) approach a limit called the double integral of  f  over  

R that is denoted by  ( , ) ( , )
R R

f x y dA or f x y dx dy∫∫ ∫∫  

 

Thus 
0 1

( , ) lim ( , )
n

k k kA
R

f x y dA f x y A
∆ →

= ∆∑∫∫ ---------- (20.3) 

 

As with functions of a single variable, the sums approach this limit no matter how 

the interval [a, b] and [c, d] that determine R are subdivide, along as the lengths of 

the subdivisions both go to zero. The limit (20.3) is independent of the order in 

which the area kA∆  are numbered, and independent of the choice of ( , )k kx y  

within each kA∆ . The continuity of  f   sufficient condition or the existence of the 

double integral, but not a necessary one, and limit question exists for many 

discontinuous functions also. 
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20.1.1 Properties of Double Integral 

Like “single” integrals, we have the following properties for double integrals of 

continuous functions which are useful in computations and applications. 

(i) ( , ) ( , )
R R

k f x y dA k f x y dA=∫∫ ∫∫  (any number k) 

(ii) [ ]( , ) ( , ) ( , ) ( , )
R R R

f x y g x y dA f x y dA g x y dA+ = +∫∫ ∫∫ ∫∫  

(iii) [ ]( , ) ( , ) ( , ) ( , )
R R R

f x y g x y dA f x y dA g x y dA− = −∫∫ ∫∫ ∫∫  

(iv) ( , ) 0 ( , ) 0
R

f x y dA if f x y on R≥ ≥∫∫  

(v)  ( , ) ( , ) ( , ) ( , )
R R

f x y dA g x y dA if f x y g x y on R≥ ≥∫∫ ∫∫  

(vi)  If 1 2 1 2,R R R R R=   , R is the union of two non-overlapping rectangles R1 

and R2, we have 

 

1 2 1 2

( , ) ( , ) ( , )
R R R R

f x y dA f x y dA f x y dA= +∫∫ ∫∫ ∫∫


 

 

Volume: When f(x, y) > 0, we may interpret  ( , )
R

f x y dA∫∫  as the volume of the 

solid enclosed by R, the planes x = a, x = b, y = c, y = d , and the surface z = f(x, 

y) see fig 2. 

Each term ( , )k k kf x y A∆ in the sum 
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= ∆∑  is the volume of a vertical rectangular prism y  that  
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approximate the volume of the portion of the solid that stands above the box - 

kA∆ . The sum Sn  thus approximates what we call the total volume of  the solid, 

and we define this volume to be  

Volume = lim Sn = ( , )
R

f x y dA∫∫  

 

20.1.2 Fubbin’s theorem for calculating double integrals: 

Theorem 20.1. (Fubbin’s theorem (1st  form)) 

If f(x, y) is continuous on the rectangular region : ,R a x b c y d≤ ≤ ≤ ≤ , then 
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Fubbin’s theorem shows that double integrals over rectangles can be calculated as 

iterated integrals. This means that we can evaluate a double integral by integrating 

one variable at a time, using the integration techniques we already know for 

function of a single variable. 

 

Fubin’s theorem also says that we may calculate the double integral by integrating 

in either order (a genuine convenience). In particular, when we calculate a volume 

by slicing, we may use either planes perpendicular to the x-axis or planes 

perpendicular to y-axis. We get same answer either way. 

 

Even more important is the fact that Fubin’s theorem holds for any continuous 

function f(x, y). In particular it may have negative values as well as positive values 

on R, and the integrals we calculate with Fubin’s theorem may represent other 

things besides volumes. 

 

Example 20.1: Suppose we wish to calculate the volume under the plane z = 4-x-y 

over the region : 0 2, 0 1R x y≤ ≤ ≤ ≤  in the xy – plane. 

 

Solution: The volume under the plane is given by (4 )
R

x y dA− −∫∫ . 

Next we have to calculate the double integral. 

Now we will complete the stated example. 

 
1 2

0 0

( , ) (4 )
R

f x y dA x y dx dy= − −∫∫ ∫ ∫  
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21 2

0 0

4
2
xx xy dy

 
= − − 

 
∫  

( )
1

0

8 2 2y dy= − −∫  

( )
1

0

6 2y dy= −∫  

12

0
6 5y y= − =  

 

Example 20.2 Calculate ( , )
R

f x y dA∫∫  for  

2( , ) 1 6f x y x y= −   and  : 0 2, 1 1R x y≤ ≤ − ≤ ≤  

 

Solution: By Fubin’s theorem 

 
1 2

2

1 0

( , ) (1 6 )
R

f x y dA x y dx dy
−

= −∫∫ ∫ ∫  

                      ( )
21

3

1 1

2x x y dy
− −

= −∫  

                     ( )
1

1

2 16y dy
−

= −∫  

                     
12

1
2 8y y

−
= −  

                     (2 8) ( 2 8) 4= − − − − =  

 

Reversing the order of integration gives the same answer: 
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11 2 2

2 2 2

1 0 0 1

(1 6 ) 3x y dy dx y x y dx
− −

− = −∫ ∫ ∫  

                               
2

2 2

0

(1 3 ) ( 1 3 )x x dx = − − − − ∫  

                               
2

2 2

0

1 3 1 3y x dx = − + + ∫  

                               2

0
2 4x= = . 

 

20.1.2 How to determine the limits of Integration  

The difficult part of evaluating a double integral can be finding the limits of 

integration. But there is a procedure to follow: 

If we want to evaluate over a region R, integrating first with respect to y and then 

with respect to x, we take the following steps: 

1. We imagine a vertical Line L cutting through in the direction of increasing y  

2. We integrate from the y-value where L enters R to the y-value where L leaves R 

3. We choose x-limits that include all the vertical lines that pass through R  

 

Example 20.3 Change the order of integral 
211

0 1

( , )
y xx

x y x

f x y dy dx
= −=

= = −
∫ ∫  

To calculate the same double integral as an iterated integral with order of 

integration reversed consider (the figure), by using the above procedure, we have  
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0 1

( , )
x y

x y

f x y dx dy
= −

= −
∫ ∫  

 

Example 20.4 Calculate 
sin

A

x dA
x∫∫  where A is the triangle in the xy-plane 

bounded by the x-axis, the line y = x and the line y = 1. 

 

Solution: 
1

0 0

sinx x dy dx
x

 
 
 
∫ ∫  

              
1

00

sin y x

y

x y dx
x

=

=

 
=   

 
∫  

                
1

1

0
0

sin cos cos1 .46x dx x= = − = − +∫   

If we reverse the order of integration and try to calculate  

x x 1 0 

L 

Biggest 
x = 1 

Leaves where 
y = 1- x2 

Smallest 
x = 0 

Leaves where 
y = 1- x 

y 

1 
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1 1

0

sin

y

xdx dy
x∫ ∫ , we can’t evaluate it because we can’t express 

sin x
x∫  in terms of 

elementary functions. 

 

PROBLEM  

 

Evaluate the following integrals and sketch the region over which each integration 

takes place. 

1. 
3 2 2

0 0
(4 )y dy dx−∫ ∫       

2. 
3 0 2

0 2
( 2 )x y xy dy dx

−
−∫ ∫      

3. 
0 0

sin
x
x y dy dx

π

∫ ∫       

4. 
sin

0 0

x
y dy dx

π

∫ ∫        

5. Find the value of the integral 
11

10 0

y xyye dx dy∫ ∫   

6. Sketch the region of integration of 
2

2 2

0

( , )
x

x

f x y dy dx∫ ∫ and express the integral as 

an equivalent double integral with order of integration. 

 

Ans.: 1. 16, 2. 0, 3. 
( )24

2
π+

, 4. 
4
π

, 5. 9 9e−  & 6.  

 

Keywords: Multiple Integrals, Double Integrals, Triple Integrals, Area, Volume 
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