Lesson 2

Taylor's theorem / Taylor's expansion, Maclaurin's expansion

2.1 Introduction

In calculus, Taylor's theorem gives us a polynomial which approximates the function in terms of the derivatives of the function. Since the derivatives are usually easy to compute, there is no difficulty in computing these polynomials.

A simple example of Taylor's theorem is the approximation of the exponential function e^x near x = 0.

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^n}{n!}$$

The precise statement of the Taylor's theorem is as follows:

Theorem 2.1: If $n \ge 0$ is an integer and f is a function which is n times continuously differentiable on the closed interval [a,x] and n+1 times differentiable on the open interval (a,x), then

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a)$$

$$+\frac{f^{(2)}(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)$$

Here, n! denotes the factorial of n, and $R_n(x)$ is a remainder term, denoting the

difference between the Taylor polynomial of degree n and the original function. The remainder term $R_n(x)$ depends on x and is small if x is close enough to a.

Several expressions are available for it. The Lagrange form is given by

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} = a + \theta(x-a)$$

where
$$0 < \theta < 1$$
.

If we put a = 0, Taylor's formula reduces to Maclaurin's formula.

where ξ lies between α and x.

Notes

- In fact, the mean value theorem is used to prove Taylor's theorem with the Lagrange remainder term.
- The Taylor series of a real function f(x) that is infinitely differentiable in a

neighborhood of a real number a, is the power series of the form

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

- In general, a function need not be equal to its Taylor series, since it is possible that the Taylor series does not converge, or that it converges to a different function.
- However, for some functions f(x), one can show that the remainder term

 $R_n(x)$ approaches zero as *n* approaches ∞ . Those functions can be expressed as a Taylor series in a neighbourhood of the point *a* and are called analytic.

Example 2.1 Show that $\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

Solution:

Here $f(x) = \sinh x$, $f'(x) = \cosh x$, So

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \cdots$$

$$f(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

 $R_n(x) = \frac{h^n}{n!} f^{(n)}(a + \theta h)$. But for a = 0 and h = x

$$|R_n(x)| = \left|\frac{x^n}{n!}f^{(n)}(\theta x)\right|$$

$$\lim_{n \to \infty} |R_n| = \lim_{n \to \infty} \left| \frac{x^n}{n!} \right| |\cosh(\theta x)| = 0$$

Example 2.2. Find the Taylor series expansion of $\frac{1}{x^2-4}$

Solution:
$$f(x) = \frac{1}{x^2 - 4} = \frac{1}{(x+2)(x-2)}$$

$$=\frac{A}{x+2}+\frac{B}{x-2}$$

$$= -\frac{1}{4(x+2)} + \frac{1}{4(x-2)}$$

$$= -\frac{1}{8(1+\frac{x}{2})} + \frac{1}{-8(1-\frac{x}{2})}$$

$$= -\frac{1}{8}\left(1 + \frac{x}{2}\right)^{-1} - \frac{1}{8}\left(1 - \frac{x}{2}\right)^{-1}$$

for $\left|\frac{x}{2}\right| < 1$, we have

$$= -\frac{1}{8} \left[1 - \frac{x}{2} + \left(-\frac{x}{2} \right)^2 + \left(-\frac{x}{2} \right)^3 \cdots \right]$$
$$-\frac{1}{8} \left[1 + \frac{x}{2} + \left(\frac{x}{2} \right)^2 + \left(\frac{x}{2} \right)^3 \cdots \right]$$

$$=-\frac{1}{8}[2+(\frac{x}{2})^{2}+\cdots]$$

Example 2.3 : Find $f^{(100)}(0)$ if $f(x) = e^{x^2}$

Ans: $f^{(100)}(0) = \frac{100!}{50!}$

Questions: Answer the following questions.

- 1. Expand in power of x-2 of the polynomial $x^4 5x^3 + 5x^2 + x + 2$.
- 2. Expand in power of x+1 of the polynomial $x^5 + 2x^4 x^2 + x+1$.
- 3. Write Taylor's formula for the function $y = \sqrt{x}$ when a = 1, n = 3.
- 4. Write the Maclaurin formula for the function $y = \sqrt{1+x}$ when n = 2.
- 5. Using the results of above problem, estimate the error of the approximate equation $\sqrt{1+x} \approx 1 + \frac{1}{2}x \frac{1}{8}x^2$ when x = 0.2.
- 6. Write down the Taylor's expansion for the function $f(x) = \sin x$ about the point $a = \frac{\pi}{4}$ with n = 4.

7. Applying Taylor's theorem with remainder prove that $1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$ if x > 0.

- 8. Applying Maclaurin's theorem with remainder expand
 - (i) $\ln(1+x)$ (ii) $(1+x)^m$.

Keywords: Taylor's Formula, Taylor's Series, Maclaurin Formula and Series.

References

W. Thomas Finny (1998). Calculus and Analytic Geometry, 6th Edition, Publishers, Narsa, India.

R. K. Jain, and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol. (2003). Calculus, Volume II Second Editions, Publishers, John Willey & Sons, Singapore.