Lesson 2

Taylor's theorem / Taylor's expansion, Maclaurin's expansion

2.1 Introduction

In calculus, Taylor's theorem gives us a polynomial which approximates the function in terms of the derivatives of the function. Since the derivatives are usually easy to compute, there is no difficulty in computing these polynomials.

A simple example of Taylor's theorem is the approximation of the exponential function e^{x} near $x=0$.

$$
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{n}}{n!}
$$

The precise statement of the Taylor's theorem is as follows:

Theorem 2.1: If $n \geq 0$ is an integer and f is a function which is n times continuously differentiable on the closed interval $[a, x]$ and $n+1$ times differentiable on the open interval (a, x), then

$$
\begin{gathered}
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a) \\
+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)
\end{gathered}
$$

Here, n ! denotes the factorial of n, and $R_{n}(x)$ is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function. The remainder term $R_{n}(x)$ depends on x and is small if x is close enough to a.

Several expressions are available for it. The Lagrange form is given by

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}=\mathrm{a}+\theta(x-a)
$$

$$
\text { where } 0<\theta<1
$$

If we put $a=0$, Taylor's formula reduces to Maclaurin's formula.
where ξ lies between a and x.

Notes

- In fact, the mean value theorem is used to prove Taylor's theorem with the Lagrange remainder term.
- The Taylor series of a real function $f(x)$ that is infinitely differentiable in a neighborhood of a real number a, is the power series of the form

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

- In general, a function need not be equal to its Taylor series, since it is possible that the Taylor series does not converge, or that it converges to a different function.
- However, for some functions $f(x)$, one can show that the remainder term $R_{n}(x)$ approaches zero as n approaches ∞. Those functions can be expressed as a Taylor series in a neighbourhood of the point \boldsymbol{a} and are called analytic.

Example 2.1 Show that $\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots$

Solution:

Here $f(x)=\sinh x, f^{\prime}(x)=\cosh x$, So

$$
\begin{gathered}
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\cdots \\
f(x)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
R_{n}(x)=\frac{h^{n}}{n!} f^{(n)}(a+\theta h) . \text { But for } a=0 \text { and } h=x \\
\left|R_{n}(x)\right|=\left|\frac{x^{n}}{n!} f^{(n)}(\theta x)\right|
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left|R_{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n}}{n!} \| \cosh (\theta x)\right|=0
$$

Example 2.2. Find the Taylor series expansion of $\frac{1}{x^{2}-4}$

Solution: $f(x)=\frac{1}{x^{2}-4}=\frac{1}{(x+2)(x-2)}$

$$
\begin{aligned}
&=\frac{A}{x+2}+\frac{B}{x-2} \\
&=-\frac{1}{4(x+2)}+\frac{1}{4(x-2)} \\
&=-\frac{1}{8\left(1+\frac{x}{2}\right)}+\frac{1}{-8\left(1-\frac{x}{2}\right)} \\
&==-\frac{1}{8}\left(1+\frac{x}{2}\right)^{-1}-\frac{1}{8}\left(1-\frac{x}{2}\right)^{-1}
\end{aligned}
$$

for $\left|\frac{x}{2}\right|<1$, we have
$=-\frac{1}{8}\left[1-\frac{x}{2}+\left(-\frac{x}{2}\right)^{2}+\left(-\frac{x}{2}\right)^{3} \cdots\right]$

$$
-\frac{1}{8}\left[1+\frac{x}{2}+\left(\frac{x}{2}\right)^{2}+\left(\frac{x}{2}\right)^{3} \cdots\right]
$$

$$
=-\frac{1}{8}\left[2+\left(\frac{x}{2}\right)^{2}+\cdots\right]
$$

Example 2.3 : Find $f^{(100)}(0)$ if $f(x)=e^{x^{2}}$

Ans: $f^{(100)}(0)=\frac{100!}{50!}$.

Questions: Answer the following questions.

1. Expand in power of $x-2$ of the polynomial $x^{4}-5 x^{3}+5 x^{2}+x+2$.
2. Expand in power of $x+1$ of the polynomial $x^{5}+2 x^{4}-x^{2}+x+1$.
3. Write Taylor's formula for the function $y=\sqrt{x}$ when $a=1, n=3$.
4. Write the Maclaurin formula for the function $y=\sqrt{1+x}$ when $n=2$.
5. Using the results of above problem, estimate the error of the approximate equation $\sqrt{1+x} \approx 1+\frac{1}{2} x-\frac{1}{8} x^{2}$ when $x=0.2$.
6. Write down the Taylor's expansion for the function $f(x)=\sin x$ about the point $a=\frac{\pi}{4}$ with $n=4$.
7. Applying Taylor's theorem with remainder prove that $1+\frac{x}{2}-\frac{x^{2}}{8}<\sqrt{1+x}<1+\frac{x}{2}$ if $x>0$.
8. Applying Maclaurin’s theorem with remainder expand
(i) $\ln (1+x)$
(ii) $(1+x)^{m}$.

Keywords: Taylor’s Formula, Taylor’s Series, Maclaurin Formula and Series.

References

W. Thomas Finny (1998). Calculus and Analytic Geometry, $6^{\text {th }}$ Edition, Publishers, Narsa, India.
R. K. Jain, and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus $2^{\text {nd }}$ Edition, Publishers, PHI, India.
Piskunov, N. (1996). Differential and Integral Calculus Vol I, \& II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol. (2003). Calculus, Volume II Second Editions, Publishers,John Willey \& Sons, Singapore.

