Module 1: Differential Calculus

Lesson 13

Curvature

13.1 Introduction

Curvature measures the extent to which a curve is not contained in a straight line.
It curvature measures how curved the curve is. We have heard the comparison of
bending or curvature of a road at two of its points. The curvature of a straight line
Is zero. It also measures how fast the tangent vector turns as a point moves along

the curve.
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Let A be a fixed point on the curve. Let arc AP = s, and arc AQ = s + As, so that
arc PQ = As. Let ¢, ¢ + Ag be the angles which the tangents at P and @ make
with some fixed line (say x- axis). A¢ denotes the angle formed by these tangents.
The symbol Ag also denotes the angle through which the tangent turns from P and
@ through a distance As. Ag will be large or small, as compared with As,
depending the degree of the sharpness of the bend. This suggests the following

definitions:
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The curvature of the curve at P is defined as lim,_, | % | i

The reciprocal of curvature p = % IS the radius of curvature.

Length of Arc as a Function, Derivative of Arc.

Let v = f(x) be the equation of a given curve on which we take a fixed point A.
Let P(x,y) and Q(x + Ax, y + Ay) be the variable points on the curve with arc
AP =sand arc AQ = s+ Asso thatarc PQ = As.
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chordPQ? = PN? + NQ? = Ax? + Ay?

=
chord PQ. 2 _ ﬂ___"lf 2
(: Ax ] =1+ I:.-'_"n.:x:]
=
chord PQ -5 Asyz _ .-'_"n._”v 7
[ are PQ ] (ix) 1+ (ﬂx]
limlz,_,,t.M = 1, taking limit lim,_, » both sides we have
arc PQ

=1+
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Radius of Curvature: Cartesian Equations

We define the absolute value of % as the curvature and denote it by x = |§|.

Consider the curve y = f(x), we note that tang = g and, therefore,

_ -1 8y
¢ = tan™* ()
Differentiating this with respect to x, we have

diy
d¢ — _ dx?
dx 1+{d—aj“f )2

AsE = 1+ (®)2 we have
dax dx

a2y
R v dZy
=& ALY =2y
9 _ ar _ gt dar
ds £ dy 4y.2.%
de 14?7 DGR
2 2 dZ
ds 1+ z d. v
Hence p = | = | = 22 where y, =2, 3, =73
de Y2 doc dx?

2

Note: If p = %, the radius of curvature, p, is positive or negative according as E

IS +ve or -ve i.e., accordingly as the curve is convex downward or convex upward.
But we consider p is +ve here. Curvature is zero at point of inflection. Since p is
independent of the choice of x-axis and y-axis, interchanging x and v, we see that

p, is given by
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Curvature- parametric Equation
Givenx = f(t), y =F(t). f'(t) = 0.

dy Fl@&) d%y B FE -

dx (&) dx? If'12

|f’F”—F’f”| H=E

Hence the curvature ¥ = 2
e 99

Curvature- polar Equation

Let = f(8) be the given curve in polar co-ordinates. Now its cartesian
coordinates are of the form x =7rcosf, y=rsinf. ie., x = f(f)cosé,
v = f(#)sinf. Now

dx d ) dr )
& _ 4 058 — f(8)sinf = — cosf — rsind
dg  dé de

and

dy dr .
— = —ginf + rcosf
dg  de
d2x dZr dr .
= cosf — 2 —sinf — rcos@
dgz 4z da
d% v d¥r . dr )
— = sinf + 2— cosf — rsinf
dgz 4@z da

substituting the latter expressions in the previous parametric-form, we have

|T2+2T’Z—'r:r'” |

o =
(rZ+r' )2

We know
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numerator becomes
(r''sinf@ + 2r'cosf@ — rsinf) X (r'cosf — rsinf)
—(r'sinf + rcos@) X (r''cosf — 2r'sinf — rcosh)
= r"r'sinfcosd + 2r'*cos?6 — rr'sinfcosl
—rr''sin’8 — 2rr'sinfcosd + r*sin?8
—r'r""sinfcos@ + 2r'*sin?6 + rr'sinfcos
—rr' cos?8 + 2rr'sinfcosd + r*cos? 0
= 1r2(sin%6 + cos?8) + 277 (cos?6 + sin6)

—rr" (sin’6 + cos?8)

To check we can observe that
[f'F —F'f'=[r2+2r"° —rr"
denominator becomes
(r'cosf — rsin@)? + (r'sind + rcosf)?
= 7'*cos?0 + r2sin?@ — 2r7'sinfcosl
r'%sin?0 + r2cos?@ + 2rr'sinfcosd

= 1'% (cos?0 + sin?6) + r2(sin?8 + cos20)

2

[I:fr)z + EFJ)E]E — (TJQ +T2)E

Hence
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The radius of curvature is

{TZ +r 2 ]%
p=

o |r2+2r! p— |

Example 1: Determine the radius of curvature of the curve r = a8 (a = 0)

Solution:

dr d2r

ar _ =0

de a dez

Hence

3 2

_ (a*f*+a®)z  a(f®+1)z
T a28%42g%  §%42

* We know

F=FF P =rF
_AfEF

K F
[(f' 2 +(F)?]2

numerator becomes
(r''sinf + 2r'cosf — rsinf) X (r'cosf — rsinf)
—(r'sinf + rcos@) X (r''cosf — 2r'sinf — rcosh)
= r'"r'sinfcosf + 2r'*cos?6 — rr'sinbcosd
—rr''sin?8 — 2rr'sinfcosf + rZsin’f

. 2 . .
—r'r""sinfcosf + 2r' “sin?@ + rr'sinfBcosfh
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—rr' cos?@ + 2rr'sinfcosd + rcos? o
= r2(sin?6 + cos?8) + 21’ (cos?6 + sin?6)
—rr' (sin’6 + cos?@)
=|r2+2r7 —rr"|
denominator becomes
(r'cosf — rsinf)? + (r'sind + rcosf)?
= 7'*cos?0 + r2sin?@ — 2r7'sinfcosh
r'%sin?0 + r2cos?@ + 2rr'sinfcosd

= 1'% (cos?0 + sin?6) + r2(sin?8 + cos20)

Hence

Example 2: Find the radius of curvature of r = aseczg

g
Ans.: p = 2asec3;

Example : Find the radius of curvature of x = 3t% vy =3t —t3fort =1,

Ans.:.p=6

Example : Find the curvature of the hyperbola xy = 1 at (1,1).

Solution:
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1 2
r rr
'=——andy’ =—.50
) x2 ) x2
Z
= 22 _2 x5 _ 2x2
1 2 x2 . .2 I
[1+(3)]= (x%+1)2 (x*+1)2
2 V2

Whenx =1 Kk=—==
242

4 2’

Example 3: For what value of x is the radius of curvature of y = e* smallest?

Solution:

2
e . . (1+e?*)z
y'=y'"=e" k= _and radius of curvature p is &=

(1+e2%)2 e

. Then

1 2
dp & 2 (14627 )2 (262%)—6" (1+67%)2

dax g2¥

_ ( 1+32x]% [3 sz‘r—{ 1+32‘r]]
e

1
_ (1+e®V)z(26*-1)
N e

etting g =0, we find 2e?* =1, 2x = lni =—In2, x = —%. As the second

_ n2)

derivative at this point is positive, x = .

Is the point which gives the smallest

radius of curvature.
Example 4: Find the radius of curvature at any point on the curves: y = ccoshf

Solution:

. x 1 . x 1 x
v’ = ¢sinh=.- = sinh—, y"" = -cosh-
& ¢ c [ [
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.3 E
_ [1+(3% _ [1+sinh?2]2

|d23’| lcoshs
Az £ £
Lx 2
(cosh®=)z
=4t = cct:-sh2
—ccsh—
£ £

y? = c2cosh?Z
c
implies

X
= ccosh®=

(Y |"~"-

2

v
c

Example : Find the radius of curvature at the origin of the curve
y—x =x%+ 2xy+y?
Solution:

2 _1=2x+2x2+2y+2y2

dy .
= e |{ﬂ,u] =1

&y _ dy dy 2 Ly
22t 2R 2@y oy

which |mpI|es |{D 0 = 8.

Example 5: Find the curvature of the cycloid x = a(t — sint), y = a(1 — cost) at

an arbitrary point (x, y).
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Solution:
dx _ 1 t dx asint, 2 = asi t ey _ acost. Using this
dt a( cost), dez g asmb e T ' 9
; .’F.’.’_FJ' rr .
parametric formula x = L2571 \we obtain

()2 +(F)* 12

__ |a{i—cost)acost—asint.asint|
= F]
[a®{1-cost)® +a®sin®t]z

_ |a® (cost—cos® t—sin® t))

[2a? {l—ccst:]]%

|cost—1]|

2 2
2za(l—cost)z

1 1

== I iasint
22a(1-cost)z  |4asing]

Whent =m, k -
|4al

Questions: Answer the following questions.
1. Find the curvature of the curve b?x? + a®y* = a®b* at the point (a,b) and (a,0)

2. Find the curvature of the curve 16y? = 4x* — x® at the point (2,0)

3. Find the curvatur e of the curve xy = 12 at the point (3,4)

Questions: Find the radius of curvature of the following curves at the

indicated points.
4.y = x* at the point (4,8)
5.x ? = 4ay at the point (0,0)

6. v = Iln x at the point (1,0)
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7. y = sin x at the point G 1)

8. Find the point of the curve y = e* at which the radius of curvature is minimum.

Ans:1 2 25 13 2%, 2005 996 292,7.1&8. —2m2,
a?’ hZ p 125 3 2 2
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