Lesson 13

Curvature

13.1 Introduction

Curvature measures the extent to which a curve is not contained in a straight line. It curvature measures how curved the curve is. We have heard the comparison of bending or curvature of a road at two of its points. The curvature of a straight line is zero. It also measures how fast the tangent vector turns as a point moves along the curve.

Fig.1.

Let A be a fixed point on the curve. Let $\operatorname{arc} A P=s$, and $\operatorname{arc} A Q=s+\Delta s$, so that arc $P Q=\Delta s$. Let $\phi, \phi+\Delta \phi$ be the angles which the tangents at P and Q make with some fixed line (say x - axis). $\Delta \phi$ denotes the angle formed by these tangents. The symbol $\Delta \phi$ also denotes the angle through which the tangent turns from P and Q through a distance $\Delta s . \Delta \phi$ will be large or small, as compared with Δs, depending the degree of the sharpness of the bend. This suggests the following definitions:

The curvature of the curve at P is defined as $\lim _{Q \rightarrow P}\left|\frac{\Delta \phi}{\Delta s}\right|=\left|\frac{d \phi}{d s}\right|$.
The reciprocal of curvature $\rho=\frac{d s}{d \phi}$ is the radius of curvature.

Length of Arc as a Function, Derivative of Arc.

Let $y=f(x)$ be the equation of a given curve on which we take a fixed point A. Let $P(x, y)$ and $Q(x+\Delta x, y+\Delta y)$ be the variable points on the curve with arc $A P=s$ and $\operatorname{arc} A Q=s+\Delta s$ so that arc $P Q=\Delta s$.

Fig. 2.

$$
\Rightarrow \quad \text { chordPQ }{ }^{2}=P N^{2}+N Q^{2}=\Delta x^{2}+\Delta y^{2}
$$

$$
\left(\frac{\text { chord } P Q}{\Delta x}\right)^{2}=1+\left(\frac{\Delta y}{\Delta x}\right)^{2}
$$

$$
\Rightarrow
$$

$$
\left[\frac{\operatorname{chord} P Q}{\operatorname{arc} P Q}\right]^{2}\left(\frac{\Delta s}{\Delta x}\right)^{2}=1+\left(\frac{\Delta y}{\Delta x}\right)^{2}
$$

$\lim _{Q \rightarrow P} \frac{\text { chord } P Q}{\text { arc } P Q}=1$, taking limit $\lim _{Q \rightarrow P}$ both sides we have

$$
\left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
\end{aligned}
$$

Radius of Curvature: Cartesian Equations

We define the absolute value of $\frac{d \phi}{d s}$ as the curvature and denote it by $\kappa=\left|\frac{d \phi}{d s}\right|$.
Consider the curve $y=f(x)$, we note that $\tan \phi=\frac{d y}{d x}$ and, therefore,

$$
\phi=\tan ^{-1}\left(\frac{d y}{d x}\right)
$$

Differentiating this with respect to x, we have

$$
\frac{d \phi}{d x}=\frac{\frac{d^{2} y}{d x^{2}}}{1+\left(\frac{y}{d x}\right)^{2}}
$$

As $\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$, we have

$$
\frac{d \phi}{d s}=\frac{\frac{d \phi}{d x}}{\frac{d s}{d x}}=\frac{\frac{\frac{d^{2} y}{d x^{2}}}{1+\left(\frac{(y)}{d x}\right)^{2}}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}=\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}
$$

Hence $\rho=\left|\frac{d s}{d \phi}\right|=\frac{\left(1+y_{1}{ }^{2}\right)^{\frac{3}{2}}}{y_{2}}$, where $y_{1}=\frac{d y}{d x}, y_{2}=\frac{d^{2} y}{d x^{2}}$

Note: If $\rho=\frac{d s}{d \phi}$, the radius of curvature, ρ, is positive or negative according as $\frac{d^{2} y}{d x^{2}}$ is +ve or -ve i.e., accordingly as the curve is convex downward or convex upward. But we consider ρ is + ve here. Curvature is zero at point of inflection. Since ρ is independent of the choice of x-axis and y-axis, interchanging x and y, we see that ρ, is given by

$$
\frac{\left[1+\left(\frac{d x}{d y}\right)^{2}\right]^{\frac{3}{2}}}{\left|\frac{d^{2} x}{d y^{2}}\right|}
$$

Curvature- parametric Equation

Given $x=f(t), y=F(t) . f^{\prime}(t)=0$.

$$
\frac{d y}{d x}=\frac{F^{I}(t)}{f^{I}(t)}, \frac{d^{2} y}{d x^{2}}=\frac{f^{I} F^{\prime \prime}-F^{\prime} f^{\prime \prime}}{\left[f^{\prime}\right]^{3}}
$$

Hence the curvature $\kappa=\frac{\left|f^{I} F^{\prime \prime}-F^{\prime} f^{\prime \prime}\right|}{\left[\left(f^{\prime}\right)^{2}+\left(F^{I}\right)^{2}\right]^{\frac{3}{2}}} \kappa=\frac{d s}{d \phi}$

Curvature- polar Equation

Let $r=f(\theta)$ be the given curve in polar co-ordinates. Now its cartesian coordinates are of the form $x=r \cos \theta, y=r \sin \theta$. i.e., $x=f(\theta) \cos \theta$, $y=f(\theta) \sin \theta$. Now

$$
\frac{d x}{d \theta}=\frac{d f}{d \theta} \cos \theta-f(\theta) \sin \theta=\frac{d r}{d \theta} \cos \theta-r \sin \theta
$$

and

$$
\begin{gathered}
\frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta \\
\frac{d^{2} x}{d \theta^{2}}=\frac{d^{2} r}{d \theta^{2}} \cos \theta-2 \frac{d r}{d \theta} \sin \theta-r \cos \theta \\
\frac{d^{2} y}{d \theta^{2}}=\frac{d^{2} r}{d \theta^{2}} \sin \theta+2 \frac{d r}{d \theta} \cos \theta-r \sin \theta
\end{gathered}
$$

substituting the latter expressions in the previous parametric-form, we have

$$
\kappa=\frac{\left|r^{2}+2 r^{r^{2}}-r r^{\prime \prime}\right|}{\left(r^{2}+r^{r^{2}}\right)^{\frac{3}{2}}}(*)
$$

We know

$$
\kappa=\frac{\left|f^{\prime} F^{\prime \prime}-F^{\prime} f^{\prime \prime}\right|}{\left[\left(f^{\prime}\right)^{2}+\left(F^{\prime}\right)^{2}\right]^{\frac{3}{2}}}
$$

numerator becomes

$$
\begin{gathered}
\left(r^{\prime \prime} \sin \theta+2 r^{\prime} \cos \theta-r \sin \theta\right) \times\left(r^{\prime} \cos \theta-r \sin \theta\right) \\
-\left(r^{\prime} \sin \theta+r \cos \theta\right) \times\left(r^{\prime \prime} \cos \theta-2 r^{\prime} \sin \theta-r \cos \theta\right) \\
=r^{\prime \prime} r^{\prime} \sin \theta \cos \theta+2 r^{\prime^{2}} \cos ^{2} \theta-r r^{\prime} \sin \theta \cos \theta \\
-r r^{\prime \prime} \sin ^{2} \theta-2 r r^{\prime} \sin \theta \cos \theta+r^{2} \sin ^{2} \theta \\
-r^{\prime} r^{\prime \prime} \sin \theta \cos \theta+2 r^{\prime 2} \sin ^{2} \theta+r r^{\prime} \sin \theta \cos \theta \\
-r r^{\prime \prime} \cos ^{2} \theta+2 r r^{\prime} \sin \theta \cos \theta+r^{2} \cos ^{2} \theta \\
=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 r^{\prime 2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
-r r^{\prime \prime}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
\end{gathered}
$$

To check we can observe that

$$
\left[f^{\prime} \mathrm{F}^{\prime \prime}-\mathrm{F}^{\prime} f^{\prime \prime}\right]=\left|r^{2}+2 r^{\prime 2}-r r^{\prime \prime}\right|
$$

denominator becomes

$$
\begin{gathered}
\left(r^{\prime} \cos \theta-r \sin \theta\right)^{2}+\left(r^{\prime} \sin \theta+r \cos \theta\right)^{2} \\
=r^{\prime 2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2 r r^{\prime} \sin \theta \cos \theta \\
r^{\prime 2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta+2 r r^{\prime} \sin \theta \cos \theta \\
=r^{\prime^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
{\left[\left(f^{\prime}\right)^{2}+\left(\mathrm{F}^{\prime}\right)^{2}\right]^{\frac{3}{2}}=\left(r^{\prime 2}+r^{2}\right)^{\frac{3}{2}}}
\end{gathered}
$$

Hence

$$
\kappa=\frac{\left|r^{2}+2 r^{r^{2}}-r r^{\prime \prime}\right|}{\left(r^{2}+r^{\prime 2}\right)^{\frac{3}{2}}}
$$

The radius of curvature is

$$
\rho=\frac{\left(r^{2}+r^{r^{2}}\right)^{\frac{3}{2}}}{\left|r^{2}+2 r^{\prime 2}-r r^{\prime \prime}\right|}
$$

Example 1: Determine the radius of curvature of the curve $r=a \theta(a>0)$

Solution:

$$
\frac{d r}{d \theta}=a, \frac{d^{2} r}{d \theta^{2}}=0
$$

Hence

$$
\rho=\frac{\left(a^{2} \theta^{2}+a^{2}\right)^{\frac{3}{2}}}{a^{2} \theta^{2}+2 a^{2}}=\frac{a\left(\theta^{2}+1\right)^{\frac{3}{2}}}{\theta^{2}+2}
$$

* We know

$$
\kappa=\frac{\left|f^{\prime} F^{\prime \prime}-F^{\prime} f^{\prime \prime}\right|}{\left[\left(f^{\prime}\right)^{2}+\left(F^{\prime}\right)^{2}\right]^{\frac{3}{2}}}
$$

numerator becomes

$$
\begin{gathered}
\left(r^{\prime \prime} \sin \theta+2 r^{\prime} \cos \theta-r \sin \theta\right) \times\left(r^{\prime} \cos \theta-r \sin \theta\right) \\
-\left(r^{\prime} \sin \theta+r \cos \theta\right) \times\left(r^{\prime \prime} \cos \theta-2 r^{\prime} \sin \theta-r \cos \theta\right) \\
=r^{\prime \prime} r^{\prime} \sin \theta \cos \theta+2 r^{\prime 2} \cos ^{2} \theta-r r^{\prime} \sin \theta \cos \theta \\
-r r^{\prime \prime} \sin ^{2} \theta-2 r r^{\prime} \sin \theta \cos \theta+r^{2} \sin ^{2} \theta \\
-r^{\prime} r^{\prime \prime} \sin \theta \cos \theta+2 r^{\prime 2} \sin ^{2} \theta+r r^{\prime} \sin \theta \cos \theta
\end{gathered}
$$

$$
\begin{gathered}
-r r^{\prime \prime} \cos ^{2} \theta+2 r r^{\prime} \sin \theta \cos \theta+r^{2} \cos ^{2} \theta \\
=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 r^{\prime^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
-r r^{\prime \prime}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
=\left|r^{2}+2 r^{\prime^{2}}-r r^{\prime \prime}\right|
\end{gathered}
$$

denominator becomes

$$
\begin{gathered}
\left(r^{\prime} \cos \theta-r \sin \theta\right)^{2}+\left(r^{\prime} \sin \theta+r \cos \theta\right)^{2} \\
=r^{r^{2}} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2 r r^{\prime} \sin \theta \cos \theta \\
r^{\prime^{2}} \sin ^{2} \theta+r^{2} \cos ^{2} \theta+2 r r^{\prime} \sin \theta \cos \theta \\
=r^{\prime^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
r^{r^{2}}+r^{2}
\end{gathered}
$$

Hence

$$
\kappa=\frac{\left|r^{2}+2 r^{r^{2}}-r r^{\prime \prime}\right|}{\left(r^{2}+r^{r^{2}}\right)^{\frac{3}{2}}}(*)
$$

Example 2: Find the radius of curvature of $r=a \sec ^{2} \frac{\theta}{2}$
Ans.: $\rho=2 a \sec ^{3} \frac{\theta}{2}$

Example : Find the radius of curvature of $x=3 t^{2}, y=3 t-t^{3}$ for $t=1$,
Ans.: $\rho=6$

Example : Find the curvature of the hyperbola $x y=1$ at $(1,1)$.
Solution:
$y^{\prime}=-\frac{1}{x^{2}}$ and $y^{\prime \prime}=\frac{2}{x^{3}}$. So

$$
K=\frac{\frac{2}{x^{3}}}{\left[1+\left(\frac{1}{x^{4}}\right]^{\frac{3}{2}}\right.}=\frac{2}{x^{\frac{3}{3}}} \frac{x^{6}}{\left(x^{4}+1\right)^{\frac{3}{2}}}=\frac{2 x^{3}}{\left(x^{4}+1\right)^{\frac{3}{2}}}
$$

When $x=1, \kappa=\frac{2}{2 \sqrt{2}}=\frac{\sqrt{2}}{2}$.

Example 3: For what value of x is the radius of curvature of $y=e^{x}$ smallest?

Solution:

$$
\begin{aligned}
& y^{\prime}=y^{\prime \prime}=e^{x}, \kappa=\frac{e^{x}}{\left(1+e^{2 x}\right)^{\frac{3}{2}}} \text { and radius of curvature } \rho \text { is } \frac{\left(1+e^{2 x}\right)^{\frac{3}{2}}}{e^{x}} . \text { Then } \\
& \frac{d \rho}{d x}= \frac{e^{x \cdot \frac{3}{2}\left(1+e^{2 x}\right)^{\frac{1}{2}}\left(2 e^{2 x}\right)-e^{x}\left(1+e^{2 x}\right)^{\frac{3}{2}}}}{e^{2 x}} \\
&= \frac{\left(1+e^{2 x}\right)^{\frac{1}{2}}\left[3 e^{2 x}-\left(1+e^{2 x}\right)\right]}{e^{x}} \\
&=\frac{\left(1+e^{2 x}\right)^{\frac{1}{2}}\left(2 e^{2 x}-1\right)}{e^{x}}
\end{aligned}
$$

etting $\frac{d \rho}{d x}=0$, we find $2 e^{2 x}=1,2 x=\ln \frac{1}{2}=-\ln 2, x=-\frac{(\ln 2)}{2}$. As the second derivative at this point is positive, $x=-\frac{(\ln 2)}{2}$ is the point which gives the smallest radius of curvature.

Example 4: Find the radius of curvature at any point on the curves: $y=c \cosh \frac{x}{c}$

Solution:

$$
y^{\prime}=c \sinh \frac{x}{c} \cdot \frac{1}{c}=\sinh \frac{x}{c}, y^{\prime \prime}=\frac{1}{c} \cosh \frac{x}{c}
$$

$$
\begin{gathered}
\rho=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}{\left|\frac{d^{2} y}{d x^{2}}\right|}=\frac{\left[1+\sinh ^{2} \frac{x}{c}\right]^{\frac{3}{2}}}{\frac{1}{c} \cosh ^{\frac{x}{c}}} \\
=\frac{\left(\cosh ^{2} \frac{x}{c}\right)^{\frac{3}{2}}}{\frac{1}{c} \cosh ^{\frac{x}{c}}}=c \cosh ^{2} \frac{x}{c} \\
y^{2}=c^{2} \cosh ^{2} \frac{x}{c}
\end{gathered}
$$

implies

$$
\frac{y^{2}}{c}=c \cosh ^{2} \frac{x}{c}
$$

i.e. $\rho=\frac{y^{2}}{c}$.

Example : Find the radius of curvature at the origin of the curve

$$
y-x=x^{2}+2 x y+y^{2}
$$

Solution:

$$
\left.\Rightarrow \frac{d y}{d x}\right|_{(0,0)}=1 \quad \frac{d y}{d x}-1=2 x+2 x \frac{d y}{d x}+2 y+2 y \frac{d y}{d x}
$$

$$
\frac{d^{2} y}{d x^{2}}=2+2 \frac{d y}{d x}+2 x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d^{2} y}{d x^{2}}
$$

which implies $\left.\frac{d^{2} y}{d x^{2}}\right|_{(0,0)}=8$.

$$
\rho=\frac{\left(1+y_{1}\right)^{\frac{3}{2}}}{y_{2}}=\frac{2^{\frac{3}{2}}}{8}=\frac{\sqrt{2}}{4}
$$

Example 5: Find the curvature of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$ at an arbitrary point (x, y).

Solution:

$$
\frac{d x}{d t}=a(1-\cos t), \quad \frac{d^{2} x}{d t^{2}}=a \sin t, \quad \frac{d y}{d t}=a \sin t, \quad \frac{d^{2} y}{d t^{2}}=a \cos t \text {. Using this }
$$

parametric formula $\kappa=\frac{\left|f^{\prime} F^{\prime \prime}-F^{\prime} f^{\prime \prime}\right|}{\left.\left[f^{\prime}\right)^{2}+\left(F^{\prime}\right)^{2}\right]^{\frac{3}{2}}}$, we obtain

$$
\kappa=\frac{|a(1-\cos t) a \cos t-a \sin t \cdot a \sin t|}{\left[a^{2}(1-\cos t)^{2}+a^{2} \sin ^{2} t\right]^{\frac{3}{2}}}
$$

$$
=\frac{\left|a^{2}\left(\cos t-\cos ^{2} t-\sin ^{2} t\right)\right|}{\left[2 a^{2}(1-\cos t)\right]^{\frac{3}{2}}}
$$

$$
=\frac{\| \cos t-1 \mid}{2^{\frac{3}{2}} a(1-\cos t)^{\frac{3}{2}}}
$$

$$
=\frac{1}{2^{\frac{3}{2}} a(1-\cos t)^{\frac{1}{2}}}=\frac{1}{\left.\| 4 a \sin \frac{t}{2} \right\rvert\,}
$$

When $t=\pi, \kappa=\frac{1}{|4 a|}$

Questions: Answer the following questions.

1. Find the curvature of the curve $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ at the point (a,b) and (a,0)
2. Find the curvature of the curve $16 y^{2}=4 x^{4}-x^{6}$ at the point $(2,0)$
3. Find the curvatur e of the curve $x y=12$ at the point $(3,4)$

Questions: Find the radius of curvature of the following curves at the indicated points.
4. $y=x^{3}$ at the point $(4,8)$
5. $x^{2}=4 a y$ at the point $(0,0)$
6. $y=\ln x$ at the point $(1,0)$
7. $y=\sin x$ at the point $\left(\frac{\pi}{2}, 1\right)$
8. Find the point of the curve $y=e^{x}$ at which the radius of curvature is minimum.

Ans.: 1. $\frac{b}{a^{2}}, \frac{a}{b^{2}}, 2 . \frac{1}{2}, 3 . \frac{24}{125}, 4 . \frac{80 \sqrt{10}}{3}, 5.29,6.2 \sqrt{2}, 7.1 \& 8 .-\frac{1}{2} \ln 2, \frac{\sqrt{2}}{2}$

References

W. Thomas, Finny (1998). Calculus and Analytic Geometry, $6^{\text {th }}$ Edition, Publishers, Narsa, India.

Jain, R. K. and Iyengar, SRK. (2010), Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus $2^{\text {nd }}$ Edition, Publishers, PHI, India.
Piskunov, N. (1996). Differential and Integral Calculus Vol I, \& II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers,John Willey \& Sons, Singapore.

