Lesson 11

Lagrange's Multiplier Rule / Constrained Optimization

11.1 Introduction

We presents an introduction to optimization problems that involve finding a maximum or a minimum value of an objective function $f(x, y)$ subject to a constraint of the form $g(x, y)=k$.

Maximum and Minimum. Finding optimum values of the function $f(x, y)$
without a constraint is a well known problem in calculus. One would normally use the gradient to find critical points (gradient (∇f) vanishes). Then check all stationary and boundary points to find optimum values.

Example 1. $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$
$f(x, y)=2 x^{2}+y^{2}, f_{x}(x, y)=4 x=0, f_{y}(x, y)=2 y=0, f(x, y)$
has a critical/ stationary point at $(0,0)$.

The Hessian: A common method of determining whether or not a function has an extreme value at a stationary point is to evaluate the hessian of the function of n variables at that point. where the hessian is defined as

$$
H(f)=\left(\begin{array}{llll}
\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f}{\partial x^{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}{ }^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}{ }^{2}}
\end{array}\right)
$$

A square matrix of order $n \times n$ is said to be positive definite if its leading principal minors are all positive.

For $n=2$, we have
$H(f)=\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right)$

Second Derivative Test: The Second derivative test determines the optimality of stationary point x according to the following rules:

Let $\frac{\partial^{2} f}{\partial x^{2}}=A, \frac{\partial^{2} f}{\partial x \partial y}=B, \frac{\partial^{2} f}{\partial y^{2}}=C$, and $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$ at the point (x, y), then
1.

If $A>0$ and $A C-B^{2}>0$ at the point (x, y), then f has a local minimum at (x, y).
2.

If $A<0$ and $A C-B^{2}>0$ at the point (x, y), then f has a local maximum at (x, y).
3.

If $A C-B^{2}<0$ at ${ }^{(x, y)}$, then ${ }^{(x, y)}$ is a saddle point of f.
4.

If $A C-B^{2}=0$, further investigation is required.

In the above Example 1,

$$
\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right)
$$

Therefore $f(x, y)$ has a minimum at $(0,0)$ as $4>0$ and determinant of the matrix is $8>0$.

11.1.1 Constrained Maximum and Minimum

When finding the extreme values of $f(x, y)$ subject to a constraint $g(x, y)=k$, the stationary points found above will not work. This new problem can be thought of as finding extreme values of $f(x, y)$ when the point (x, y) is restricted to lie on the
surface $g(x, y)=k$. The value of $f(x, y)$ is maximized (minimized) when the surfaces touch each other,i.e , they have a common tangent for line.

This means that the surfaces, gradient vectors at that point are parallel, hence,

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

The number λ in the equation is known as the Lagrange multiplier.

11.2 Lagrange multiplier method

The Lagrange multiplier methods solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:

$$
L(x, y, \lambda)=f(x, y)+\lambda(k-g(x, y))
$$

or $(g-k)$). Then finding the gradient and Hessian as was done above will determine any optimum values of $L(x, y, \lambda)$.

Suppose we want to find optimum values for the following:

Example 11.2: $f(x, y)=2 x^{2}+y^{2}$ subject to $x+y=1$.

Then the Lagrangian method will result in a non-constrained function.
$L(x, y, \lambda)=2 x^{2}+y^{2}+\lambda(1-x-y)$. The gradient for this new function is

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=4 x-\lambda=0 \\
& \frac{\partial L}{\partial y}=2 y-\lambda=0 \\
& \frac{\partial L}{\partial \lambda}=1-x-y=0
\end{aligned}
$$

Solving x, y, λ, we obtain $x=\frac{1}{3}, y=\frac{2}{3}$ and $\lambda=\frac{4}{3}$.

The Hessian matrix at the stationary point

$$
H(L)=\left(\begin{array}{lll}
4 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 0
\end{array}\right)
$$

Since $\quad H(L)$ is positive definitethe solution $\quad x=\frac{1}{3}, \quad y=\frac{2}{3} \quad$ minimizes
$f(x, y)=2 x^{2}+y^{2}$ subject to $x+y=1$ with $f\left(\frac{1}{3}, \frac{2}{3}\right)=\frac{2}{3}$

Example 11.3: Find the rectangle of parameter l which has maximum area i.e., Maximize $x y$ subject to

$$
2(x+y)=l
$$

Solution:

$$
\begin{aligned}
& \qquad \begin{array}{l}
L(x, y, \lambda)=x y+\lambda 2(x+y)-l) . \\
\frac{\partial L}{\partial x}=y+2 \lambda=0 \\
\frac{\partial L}{\partial y}=x+2 \lambda=0
\end{array} \\
& \text { i.e., } x=y=-2 \lambda \quad \text { i.e., }-8 \lambda=l \Rightarrow \lambda=-\frac{l}{8} . \\
& x=y=\frac{l}{4} \text {, so that the rectangule of maximum area is a square. }
\end{aligned}
$$

Example 11.4 Find the shortest distance from the point $(1,0)$ to the parabola $y^{2}=4 x$, i.e., Minimize $(x-1)^{2}+y^{2}$ subject to $y^{2}=4 x$.
$L(x, y, \lambda)=(x-1)^{2}+y^{2}+\lambda\left(y^{2}-4 x\right)$
$\frac{\partial L}{\partial x}=2(x-1)-4 \lambda=0, \frac{\partial L}{\partial y}=2 y+2 \lambda y=0$
$y^{2}-4 x=0$

Now $2 y+2 \lambda y=0 \Rightarrow y=0$ or $\lambda=-1$

If $\lambda=-1$, then $x=-1$, from $2(x-1)-4 \lambda=0$

Hence $y=0 \Rightarrow x=0$
$x=-1$

Now $y^{2}=4^{n}, y^{2}=-4$, so $y=\sqrt{-4}$ not possible no real value.

Hence $y=0, x=0$,
i.e., $\lambda=-\frac{1}{2}$

Hence the only solution is $x=0, y=0, \lambda=-\frac{1}{2}$ and the required distance is unity.

Questions: Answer the following question

1. Determine the maximum value of the n-th root of a product of numbers
$x_{1}, x_{2}, \cdots, x_{n}$ provided that their sum is equal to a given number a. Thus the
problem is stated as follows: it is required to find the maximum of the function $z=\sqrt[n]{x_{1} \cdot x_{2} \cdots, x_{n}}$ subject to $\sum_{i=1}^{n} x_{i}-a=0, x_{i}>0$, for all i.

References

W. Thomas, Finny (1998). Calculus and Analytic Geometry, $6^{\text {th }}$ Edition, Publishers, Narsa, India.

Jain, R. K. and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus $2^{\text {nd }}$ Edition, Publishers, PHI, India.
Piskunov, N. (1996). Differential and Integral Calculus Vol I, \& II, Publishers, CBS, India.

Suggested Readings

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers,John Willey \& Sons, Singapore.

