Lesson 1

Rolle's Theorem, Lagrange's Mean Value Theorem , Cauchy's Mean Value Theorem

1.1 Introduction

In this lesson first we will state the Rolle's theorems, mean value theorems and study some of its applications.

Theorem 1. 1 [Rolle's Theorem]: Let *f* be continuous on the closed interval

[a,b] and differentiable on the open interval (a,b). If f(a) = f(b), then there

exists at least one number c in (a, b) such that f'(c) = 0.

Proof: Assume f(a) = f(b) = 0. If f(a) = f(b) = k and k = 0, then we

consider f(x) - k instead of f(x). Since f(x) is continuous on [a, b] it attains

its bounds: Let M and m be both maximum and minimum of f(x) on [a,b]. If

M = m, then f(x) = m is throughout i.e., f(x) is constant on

 $[a,b] \Rightarrow f'(x) = 0$ for all x in [a,b]. Thus \exists at least one c such that f'(c) = 0.

Suppose $M \neq m$. If f(x) varies on (a, b) then there are points where f(c) > 0

or points where f(c) < 0. Without loss of generality assume M > 0 and the

function takes the maximum value at x = c, so that f(c) = M. It is to be noted

that if c = a, f(c) = f(a) = 0 = f(b), which is a contradiction. Now as f(c)

is the maximum value of the function, it follows that $f(c + \Delta x) - f(c) \le 0$,

both when $\Delta x > 0$ and $\Delta x < 0$.

Hence,

$$\frac{f(c + \Delta x) - f(c)}{\Delta x} \le 0$$

when $\Delta x > 0$

$$\frac{f(c+\Delta x)-f(c)}{\Delta x} \ge 0$$

when $\Delta x < 0$. Since it is given that the derivative at x = c exists, we get $f'(c) \le 0$ when $\Delta x > 0$ and $f'(c) \ge 0$ when $\Delta x < 0$. Combining the two inequalities we have, f'(c) = 0.

Note: Rolle's theorem shows that b/w any two zero's of a function f(a) there exists at least one zero o $\hat{f}(x)$ i.e., f(a) = f(b) clearly f is continous on [-1,1] Example 1: Verify the Roll's theorem for $f(x) = x^2$ for all $x \in [-1,1]$.

Solution:

(i) f(1) = f(-1) = 1, (ii) f is differentiable on [-1,1], so all conditions of

Roll's theorems are satisfying. Hence f'(c) = 2c = 0 implies c = 0 and

 $c \in (-1,1)$.

Example 2: f(x) = 1 - |x| in [-1,1].

Solution:

f(-1) = f(1) = 0, f is continuous. But f(x) is not differentiable at x = 0.

Note that $f'(x) \neq 0$, for which f(x) is differentiable. As f'(x) = -1, for x > 0

and f'(x) = 1, for x < 0.

Example 3: Show that the equation $3x^5 + 15x - 8 = 0$, has only one real root

Solution:

 $f(x) = 3x^5 + 15x - 8$ is an odd degree polynomial, hence it has at least one

real root as complex roots occurs in pair.

Suppose \exists two real roots x_1, x_2 such that $x_1 < x_2$, then on $[x_1, x_2]$, all properties of Roll's theorem satisfied, hence $\exists c \in (x_1, x_2)$, such that f'(c) = 0,

But $f'(x) = 15x^4 + 15 = 15(x^4 + 1) > 0$, for all x, a contradiction to

Rolle's therorem. Hence the equation has only one real root.

1.2. Mean Value Theorems

Theorem 1.2 [Lagrange's Mean Value Theorem]: If a function f(x) is

continuous on [a, b], differentiable (a, b), then there exists at least one point c,

a < c < b such that f(b) - f(a) = f'(c)(b - a). Hence Lagrange's mean

value theorem can be written as

$$f(b) - f(a) = hf'(a + \theta h)$$
, where $h = b - a$; $0 \le \theta \le 1$.

Geometrical Representation: If all points of the arc AB there is a tangent line, then there is a point C between A and B at which the tangent is parallel to the chord connecting the points A and B.

1.2.1 Cauchy's Mean Value Theorem

Cauchy's mean value theorem, also known as the extended mean value theorem, is the more general form of the mean value theorem.

Theorem 1.2 [Cauchy's Mean Value Theorem]: It states that if functions *f*

and g are both continuous on the closed interval [a, b], and differentiable on the

open interval (a, b) and $g(a) \neq g(b)$ then there exists some $c \in (a, b)$, such

that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Note 1: Cauchy's mean value theorem can be used to prove L'Hospital's rule. The mean value theorem (Lagrange) is the special case of Cauchy's mean value theorem when g(t) = t.

Note 2: The proof of Cauchy's mean value theorem is based on the same idea as the proof of the mean value theorem

1.2.2 Another form of the statement: If f(x) and g(x) are derivable in

[a, a + h] and $g'(x) \neq 0$ for any $x \in [a, a + h]$, then there exists at least one

number $\theta \in (0,1)$ such that

$$\frac{f(a+h)-f(a)}{g(a+h)-g(a)} = \frac{f(a+\theta)}{g(a+\theta)} \quad (0 < \theta < 1)$$

Example 4: Write the Cauchy formula for the functions $f(x) = x^2$, $g(x) = x^3$

on [1,2].

Solution:

Clearly fand g are continuous and diff. on [1,2] $g'(x) = 3x^2 = 0$ iff

 $x = 0, 0 \in [1,2]$. f'(x) = 2x. Hence $g(1) \neq g(2)$

$$\frac{f(2)-f(1)}{g(2)-g(1)} = \frac{f'(c)}{g'(c)}$$

i.e., $\frac{4-1}{8-1} = \frac{2c}{3c^2}$ implies $\frac{3}{7} = \frac{2}{3c}$, so $c = \frac{14}{9}$.

1.2.3 The Intermediate Value Theorem It states the following: If y = f(x) is

continuous on [a, b], and N is a number between f(a) and f(b), then there is a

 $c \in [a, b]$ such that f(c) = N.

1.2.4 Applications of the Mean Value Theorem to Geometric properties of Functions.

Let **f** be a function which is continuous on a closed inteval **[a, b]** and assume **f**

has a derivative at each point of the open interval (a, b). Then we have

- 1. (i) If f'(x) > 0 for all $x \in (a, b)$, f is strictly increasing on [a, b].
- 2. (ii) If f'(x) < 0 for all $x \in (a,b)$, f is strictly decreasing on [a,b].
- 3. (iii) If f'(x) = 0 for all $x \in (a, b)$, f is constant.

Intermediate value Theorem for Derivatives: If f'(x) exists for $a \le x \le b$,

with $f'(a) \neq f'(b)$ then for any number d between f'(a) and f'(b) there is a

number a < c < b where f'(c) = d.

Application: If f'(x) exists with $f'(x) \neq 0$, on any interval then f has a

differentiable inverse, there.

Converse of Rolle's theorem : - (need not true).

Example 1.5 Let f(x) be continuous on [a,b] and differentiable (a,b). If

 $\exists c \in (a, b)$ such that f'(c) = 0, does it follow that f(a) = f(b)?

Solution:

No: Take for example $f(x) = x^2$ on [-1,2], f'(x) = 2x = 0 implies x = 0.

But f(-1) = 1 and f(2) = 4.

Example 1.6 Show that $|\sin x - \sin y| \le |x - y|$

Solution:

Let $f(t) = \sin t$ on [y, x], By mean value theorem $\sin x - \sin y = f'(c)(x - y)$,

But $f'(t) = \cos t$, and $|\cos t| \le 1$, for all t. Hence $|\sin x - \sin y| = |f'(c)(x - y)| \le |x - y|$.

Example 1.7 Show that $\tan^{-1}x_2 - \tan^{-1}x_1 < x_2 - x_1$, for all $x_2 > x_1$.

Solution:

Let $f(x) = \tan^{-1}x$ on $[x_1, x_2]$. By mean value theorem $\tan^{-1}x_2 - \tan^{-1}x_1 =$

$$f'(c)(x_2 - x_1) = \frac{1}{1 + c^2}(x_2 - x_1)$$
 but $\frac{1}{1 + c^2} < 1$ for all c. Hence the results.

Questions: Answer the following question.

1. Verify the truth of Rolle's theorem for the functions

(a)
$$f(x) = x^2 - 3x + 2$$
 on [1,2]

(b)
$$f(x) = (x-1)(x-2)(x-3)$$
 on [1,3]

- (c) $f(x) = \sin x \text{ on } (a) [0, \pi]$
- 2. The function $f(x) = 4x^3 + x^2 4x 1$ has roots 1 and -1. Find the root of the derivative f'(x) mentioned in Rolle's throrem.
- 3. Verify Lagrange's formula for the function $f(x) = 2x x^2$ on [0,1].
- 4. Apply Lagrange theorem and prove the inequalities

(i)
$$e^x \ge 1 + x$$
 (ii) $\ln(1 + x) < x \ (x > 0)$

(iii)
$$b^n - a^n < nb^{n-1}(b-a)$$
 for $(b > a)$

5. Using Cauchy's mean value theorem show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Keywords: Rolle's Theorem, Lagrange's and Cauchy's mean value; L'Hospital's rule; Intermediate value.

References

Thomas, W. Finny. (1998). Calculus and Analytic Geometry, 6th Edition,

Publishers, Narsa, India.

R. K. Jain, and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.

Suggested Readings

Tom, M. Apostol. (2003). Calculus, Volume II Second Editions, Publishers, John Willey & Sons, Singapore.