
Module 1: Differential Calculus 

Lesson 1 

Rolle’s Theorem, Lagrange’s Mean Value Theorem , Cauchy’s Mean Value 

Theorem 

 

1.1 Introduction 

In this lesson first we will state the Rolle’s theorems, mean value theorems  and 

study some of its applications. 

 

Theorem 1. 1 [Rolle's Theorem]: Let  be continuous on the closed interval 

 and differentiable on the open interval . If , then there 

exists at least one number  in  such that . 

 

Proof: Assume . If  and , then we 

consider  instead of . Since  is continuous on  it attains 

its bounds: Let  and  be both maximum and minimum of  on . If 

, then  is throughout i.e.,  is constant on 

 for all  in . Thus  at least one  such that . 

Suppose . If  varies on  then there are points where  

or points where Without loss of generality assume  and the 
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function takes the maximum value at , so that . It is to be noted 

that if , , which is a contradiction. Now as  

is the maximum value of the function, it follows that , 

both when  and . 

Hence,  

 
when   

  

 

when . Since it is given that the derivative at  exists, we get 

 when  and  when . Combining the two 

inequalities we have, . 

Note: Rolle’s theorem shows that b/w any two zero’s of a function  there 

exists at least one zero o   i.e.,  clearly  is continous on [-1,1] 

Example 1: Verify the Roll's theorem for  . 
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Solution:  

(i) , (ii)  is differentiable on , so all conditions of 

Roll's theorems are satisfying. Hence  implies  and 

 . 

Example 2:   in . 

Solution: 

 ,  is continuous. But  is not differentiable at . 

Note that , for which  is differentiable. As , for  

and , for . 

Example 3: Show that the equation , has only one real root 

Solution: 

 is an odd degree polynomial, hence it has at least one 

real root as complex roots occurs in pair. 

 

Suppose  two real roots   such that , then on , all 

properties of Roll's theorem satisfied, hence  , such that , 
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But , a contradiction to 

Rolle’s therorem. Hence the equation has only one real root. 

 

1.2. Mean Value Theorems 

Theorem 1.2 [Lagrange's Mean Value Theorem]: If a function  is 

continuous on , differentiable , then there exists at least one point , 

 such that . Hence Lagrange's mean 

value theorem can be written as 

 

, where . 

Geometrical Representation: If all points of the arc  there is a tangent line, 

then there is a point  between  and  at which the tangent is parallel to the 

chord connecting the points  and . 

1.2.1 Cauchy's Mean Value Theorem 

Cauchy's mean value theorem, also known as the extended mean value theorem, 

is the more general form of the mean value theorem. 

 

Theorem 1.2 [Cauchy's Mean Value Theorem]: It states that if functions  

and  are both continuous on the closed interval , and differentiable on the 
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open interval  and  then there exists some , such 

that  

 . 

Note 1: Cauchy's mean value theorem can be used to prove L'Hospital's rule. 

The mean value theorem (Lagrange) is the special case of Cauchy's mean value 

theorem when . 

Note 2: The proof of Cauchy's mean value theorem is based on the same idea as 

the proof of the mean value theorem 

 

1.2.2 Another form of the statement: If  and  are derivable in 

 and  for any , then there exists at least one 

number  such that  

  

Example 4: Write the Cauchy formula for the functions ,  

on . 
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Solution:  

Clearly  iff 

, .  . Hence  

  

i.e.,  implies , so . 

1.2.3 The Intermediate Value Theorem It states the following: If  is 

continuous on , and  is a number between  and , then there is a 

 such that . 

1.2.4 Applications of the Mean Value Theorem to Geometric properties of 

Functions. 

Let  be a function which is continuous on a closed inteval  and assume  

has a derivative at each point of the open interval . Then we have 

1. (i) If ,  is strictly increasing on . 

2. (ii) If ,  is strictly decreasing on 
. 

3. (iii) If ,  is constant. 
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Intermediate value Theorem for Derivatives: If  exists for , 

with  then for any number  between  and  there is a 

number  where . 

Application: If  exists with , on any interval then  has a 

differentiable inverse, there. 

Converse of Rolle’s theorem : - (need not true). 

 

Example 1.5 Let  be continuous on  and differentiable . If 

 such that , does it follow that ? 

Solution:  

No: Take for example  on ,  implies . 

But  and . 

Example 1.6 Show that  
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Solution:  

Let  on , By mean value theorem , 

But , and , for all . Hence 

. 

 

Example 1.7 Show that  for all . 

Solution:  

Let  on . By mean value theorem = 

 but  for all . Hence the results. 

Questions: Answer the following question. 

1. Verify the truth of  Rolle’s theorem for the functions  

(a) 2( ) 3 2f x x x= − +
 
on [1,2] 

(b) ( ) ( 1)( 2)( 3)f x x x x= − − − on [1,3] 

(c) ( ) sinf x x= on (a) [0, ]π
 

2. The function 3 2( ) 4 4 1f x x x x= + − −
 
has roots 1 and -1. Find the root of the 

derivative ( )f x′  mentioned in Rolle’ s throrem. 

3. Verify  Lagrange’s formula for the function  2( ) 2f x x x= − on [0,1]. 

4. Apply Lagrange theorem and prove the inequalities 

(i) 1xe x≥ +
        

(ii) ln(1 ) ( 0)x x x+ < >  
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(iii) 1( )n n nb a nb b a−− < −
 
for  

  
( )b a>

   
 

5. Using Cauchy’s mean value theorem show that 
0

sinlim 1
x

x
x→

=
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