

SIR ISSAC NEWTON COLLEGE OF ENGINEERING \& TECHNOLOGY,
PAPPAKOIL, NAGAPATTINAM

MECHANICAL ENGINEERING

ENGINEERING MECHANICS

III Semester: ME

Course Code	Category	Hours / Week			Credits	Maximum Marks		
AMEB03	Core	\mathbf{L}	\mathbf{T}	P	C	CIA	SEE	Total
		3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 45		

COURSE OBJECTIVES:

The course should enable the students to:
I. Students should develop the ability to work comfortably with basic engineering mechanics concepts required for analyzing static structures.
II. Identify an appropriate structural system to studying a given problem and isolate it from its environment, model the problem using good free-body diagrams and accurate equilibrium equations.
III. Understand the meaning of centre of gravity (mass)/centroid and moment of Inertia using integration methods and method of moments
IV. To solve the problem of equilibrium by using the principle of work and energy, impulse momentum and vibrations for preparing the students for higher level courses such as Mechanics of Solids, Mechanics of Fluids, Mechanical Design and Structural Analysis etc...

MODULE-I INTRODUCTION TO ENGINEERING MECHANICS

Classes: 10
Force Systems Basic concepts, Particle equilibrium in 2-D \& 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space - Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static Indeterminacy

MODULE-II	FRICTION AND BASICS STRUCTURAL ANALYSIS	Classes: 09

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack \& differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams \&types of beams; Frames \&Machines;

MODULE-III
 CENTROID AND CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

MODULE-IV
 PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS
 Classes: 08

Particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Introduction to Kinetics of Rigid Bodies covering, Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems.

MODULE-V	MECHANICAL VIBRATIONS	Classes: 08
Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums.		
Text Books:		
1.F. P. Beer and E. R. Johnston (2011), "Vector Mechanics for Engineers", Vol I - Statics, Vol II, - 2. Dynamics, Tata McGraw Hill, $9^{\text {th }}$ Edition,2013. 3.R. C. Hibbler (2006), "Engineering Mechanics: Principles of Statics and Dynamics", Pearson Press 4.Irving H. Shames (2006), "Engineering Mechanics", Prentice Hall, $4^{\text {th }}$ Edition, 2013.		
Reference Books:		
1. A.K.Tayal, "Engineering Mechanics", Uma Publications, $14^{\text {th }}$ Edition, 2013. 2. R. K. Bansal "Engineering Mechanics", Laxmi Publication, 8 $8^{\text {th }}$ Edition, 2013. 3. S.Bhavikatti,"ATextBookofEngineeringMechanics",NewAgeInternational, $1^{\text {st }}$ Edition,2012		
Web References:		
1.https://books.google.co.in/books/about/engineering_mechanics_Reference_Guide.html?id=6x1smAf_PAcC		
E-Text Books:		
1.https://books.google.co.in/books?id=6wFuw6wufTMC\&printsec=frontcover\#v=onepage \&q \&f=false		

MODULE I INTRODUCTION TO ENGINEERING MECHANICS

Mechanics

It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics to design, taking into account the effects of forces.

Statics

Statics deal with the condition of equilibrium of bodies acted upon by forces.

Rigid body

A rigid body is defined as a definite quantity of matter, the parts of which are fixed in position relative to each other. Physical bodies are never absolutely but deform slightly under the action of loads. If the deformation is negligible as compared to its size, the body is termed as rigid.

Force

Force may be defined as any action that tends to change the state of rest or motion of a body to which it is applied.

The three quantities required to completely define force are called its specification or characteristics. So the characteristics of a force are:

1. Magnitude
2. Point of application
3. Direction of application

Concentrated force/point load

Distributed force

Line of action of force

The direction of a force is the direction, along a straight line through its point of application in which the force tends to move a body when it is applied. This line is called line of action of force.

Representation of force

Graphically a force may be represented by the segment of a straight line.

Composition of two forces

The reduction of a given system of forces to the simplest system that will be its equivalent is called the problem of composition of forces.

Parallelogram law

If two forces represented by vectors AB and AC acting under an angle α are applied to a body at point A . Their action is equivalent to the action of one force, represented by vector $A D$, obtained as the diagonal of the parallelogram constructed on the vectors $A B$ and AC directed as shown in thefigure.

Force AD is called the resultant of AB and AC and the forces are called its components.

$$
R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} \alpha\right)}
$$

Now applying triangle law

$$
\frac{P}{\operatorname{Sin} \gamma}=\frac{Q}{\operatorname{Sin} \theta}=\frac{R}{\operatorname{Sin}(\pi-\alpha)}
$$

Special cases

Case-I: If $\alpha=0^{\circ}$

$$
R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} 0\right)}=\sqrt{(P+Q)^{2}}=(P+Q)
$$

Case- II: If $\alpha=$
180°

$$
R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} 180^{\square}\right)}=\sqrt{\left(P^{2}+Q^{2}-2 P Q\right)}=\sqrt{(P-Q)^{2}}=(P-Q)
$$

Case-III: If $\alpha=90^{\circ}$

$$
R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} 90^{\square}\right)}=\sqrt{P^{2}+Q^{2}}
$$

Q

$$
\alpha=\tan ^{-1}(\mathrm{Q} / \mathrm{P})
$$

Resolution of a force

The replacement of a single force by a several components which will be equivalent in action to the given force is called resolution of a force.

Action and reaction

Often bodies in equilibrium are constrained to investigate the conditions.

Free body diagram

Free body diagram is necessary to investigate the condition of equilibrium of a body or system. While drawing the free body diagram all the supports of the body are removed and replaced with the reaction forces acting on it.

1. Draw the free body diagrams of the followingfigures.

2. Draw the free body diagram of the body, the string CD and thering.

3. Draw the free body diagram of the following figures.

Equilibrium of colinear forces:

Equilibrium law: Two forces can be in equilibrium only if they are equal in magnitude, opposite in direction and collinear in action.

Superposition and transmissibility

Problem 1: A man of weight $\mathrm{W}=712 \mathrm{~N}$ holds one end of a rope that passes over a pulley vertically above his head and to the other end of which is attached a weight $\mathrm{Q}=534 \mathrm{~N}$. Find the force with which the man's feet press against the floor.

Problem 2: A boat is moved uniformly along a canal by two horses pulling with forces $\mathrm{P}=$ 890 N and $\mathrm{Q}=1068 \mathrm{~N}$ acting under an angle $\alpha=60^{\circ}$. Determine the magnitude of the resultant pull on the boat and the angles β and v.

$\mathrm{P}=890 \mathrm{~N}, \alpha=60^{\circ}$
$\mathrm{Q}=1068 \mathrm{~N}$
$R=\left(R \sqrt{\left.{ }^{2}+Q^{2}+2 P Q \cos \alpha\right)}\right.$
$=\left(890^{2}+1068^{2}+2 \times 890 \times 1068 \times 0.5\right)$
$=1698.01 \mathrm{~N}$

$$
\begin{aligned}
& \frac{Q}{\sin \beta}=\frac{P}{\sin v}=\frac{R}{\sin (\pi-\alpha)} \\
& \sin B=\frac{Q \sin \alpha}{R} \\
& =\frac{1068 \times \sin 60}{1698.01} \\
& =33
\end{aligned}
$$

$$
\begin{aligned}
& \sin \nu=\frac{P \sin \alpha}{R} \\
& =\frac{890 \times \sin 60}{1698.01} \\
& =27
\end{aligned}
$$

Resolution of a force

Replacement of a single force by several components which will be equivalent in action to the given force is called the problem of resolution of aforce.

By using parallelogram law, a single force R can be resolved into two components P and Q intersecting at a point on its line of action.

Equilibrium of collinear forces:

Equilibrium law: Two forces can be in equilibrium only if they are equal in magnitude, opposite in direction and collinear in action.
s

Law of superposition

The action of a given system of forces on a rigid body will no way be changed if we add to or subtract from them another system of forces in equllibrium.

Problem 3: Two spheres of weight P and Q rest inside a hollow cylinder which is resting on a horizontal force. Draw the free body diagram of both the spheres, together and separately.

Problem 4: Draw the free body diagram of the figure shown below.

Problem 5: Determine the angles α and β shown in the figure.

$$
\begin{aligned}
& \alpha=\tan ^{-1}(762) \\
& =39^{\square} 47^{\prime} \\
& B=\tan ^{-1}(762) \\
& \left.\frac{15}{610}\right)
\end{aligned}
$$

$$
=511^{\square} 19
$$

Problem 6: Find the reactions R_{1} and R_{2}.

Problem 7: Two rollers of weight P and Q are supported by an inclined plane and vertical walls as shown in the figure. Draw the free body diagram of both the rollers separately.

Problem 8: Find θ_{n} and θ_{t} in the following figure.

Problem 9: For the particular position shown in the figure, the connecting rod BA of an engine exert a force of $\mathrm{P}=2225 \mathrm{~N}$ on the crank pin at A . Resolve this force into two rectangularcomponents $\mathrm{P}_{\mathrm{h}} \mathrm{andP}_{\mathrm{v}}$ horizontallyandverticallyrespectivelyatA.

$$
\mathrm{P}_{\mathrm{h}}=2081.4 \mathrm{~N}
$$

$$
P_{v}=786.5 \mathrm{~N}
$$

Equilibrium of concurrent forces in a plane

-If a body known to be in equilibrium is acted upon by several concurrent, coplanar forces, then these forces or rather their free vectors, when geometrically added must form a closedpolygon.

- This system represents the condition of equilibrium for any system of concurrent forces in aplane.

$R_{a}=w \tan \alpha$
$S=w \sec \alpha$

Lami's theorem

If three concurrent forces are acting on a body kept in an equllibrium, then each force is proportional to the sine of angle between the other two forces and the constant of proportionality issame.

$\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin U}$

W

$$
\frac{S}{\sin 90}=\frac{R_{a}}{\sin (180-\alpha)}=\frac{W}{\sin (90+\alpha)}
$$

Problem: A ball of weight $\mathrm{Q}=53.4 \mathrm{~N}$ rest in a right angled trough as shown in figure. Determine the forces exerted on the sides of the trough at D and E if all the surfaces are perfectlysmooth.

Problem: An electric light fixture of weight $\mathrm{Q}=178 \mathrm{~N}$ is supported as shown in figure. Determine the tensile forces S_{1} and S_{2} in the wires BA and BC, if their angles of inclination aregiven.

$$
\frac{S_{1}}{\sin 135}=\frac{S_{2}}{\sin 150}{ }^{178} \overline{\sin 75}
$$

$S_{1} \cos \alpha=P$

$$
\mathrm{S}=\mathrm{Psec} \alpha
$$

$$
\begin{aligned}
R_{b} & =W+S \sin \alpha \\
& =W+\frac{P}{\cos \alpha} \times \sin \alpha \\
& =W+P \tan \alpha
\end{aligned}
$$

Problem: A right circular roller of weight W rests on a smooth horizontal plane and is held in position by an inclined bar AC. Find the tensions in the bar AC and vertical reaction R_{b} if there is also a horizontal force P is active.

Theory of transmissiibility of a force:

The point of application of a force may be transmitted along its line of action without changing the effect of force on any rigid body to which it may be applied.

Problem:

$\sum X=0$
$S_{1} \cos 30+20 \sin 60=S_{2} \sin 30$
$\frac{\sqrt{3}}{2} S_{1}+20 \frac{\sqrt{3}}{2}=\frac{S_{2}}{2}$
$\underline{S}_{2}=\frac{\sqrt{ }^{5}}{2} S+103^{-}$
$S_{2}=\sqrt{3} S_{1}+20 \sqrt{3}$
$\sum Y=0$
$S_{1} \sin 30+S_{2} \cos 30=S_{d} \cos 60+20$
$\frac{S_{1}}{\frac{2}{S}}+S_{2} \frac{\sqrt{3}}{2}=\frac{20}{2}+20$
$\frac{S_{1}}{2}+\frac{\sqrt{ }^{3}}{2} S=30$
$S_{1}+\sqrt{3} S_{2}=60$
Substituting the value of S_{2} in Eq.2, we get
$S_{1}+\sqrt{3}\left(\sqrt{3} S_{1}+203 /\right)=60$
$S_{1}+3 S_{1}+60=60$
$4 S_{1}=0$
$S_{1}=0 K N$
$S_{2}=20 \sqrt{3}=34.64 \mathrm{KN}$

Problem: A ball of weight W is suspended from a string of length 1 and is pulled by a horizontal force Q . The weight is displaced by a distance d from the vertical position as shown in Figure. Determine the angle α, forces Q and tension in the string S in the displacedposition.

W

$$
\begin{aligned}
& \cos \alpha=\frac{d}{l} \\
& \alpha=\cos ^{-1}\left(\frac{d}{l}\right) \\
& \sin ^{2} \alpha+\cos ^{2} \alpha=1 \\
& \Rightarrow \sin \alpha=\sqrt{\left(1-\cos ^{2} \alpha\right)} \\
& =\sqrt{1-\frac{d^{2}}{l^{2}}} \\
& =\frac{1}{l} l^{2}-d^{2}
\end{aligned}
$$

Applying Lami's theorem,
$\frac{S}{\sin 90}=\frac{Q}{\sin (90+\alpha)}=\frac{W}{\sin (180-\alpha)}$

$$
\begin{aligned}
& \frac{Q}{\sin (90+\alpha)}=\frac{W}{\sin (180-\alpha)} \\
& \Rightarrow Q=\frac{W \cos \alpha}{\sin \alpha}=\frac{\square\left(\begin{array}{l}
d \\
j
\end{array} l^{2}\right.}{\frac{1}{l} \sqrt{l^{2}-d^{2}}} \\
& \Rightarrow Q=\frac{W d}{\sqrt{l^{2}-d^{2}}} \\
& S=\frac{W}{\sin \alpha}=\frac{W}{\frac{1}{l} \sqrt{l^{2}-d^{2}}} \\
& =\frac{W l}{\sqrt{l^{2}-d^{2}}}
\end{aligned}
$$

Problem: Two smooth circular cylinders each of weight $\mathrm{W}=445 \mathrm{~N}$ and radius $\mathrm{r}=152 \mathrm{~mm}$ are connected at their centres by a string $A B$ of length $l=406 \mathrm{~mm}$ and rest upon a horizontal plane, supporting above them a third cylinder of weight $\mathrm{Q}=890 \mathrm{~N}$ and radius $\mathrm{r}=152 \mathrm{~mm}$. Find the forces in the string and the pressures produced on the floor at the point of contact.

$\cos \alpha=\frac{203}{304}$

$\Rightarrow \alpha=48.1$

$$
\begin{aligned}
\frac{R_{g}}{\sin 138.1} & =\frac{R_{e}}{\sin 138.1}=\frac{Q}{83.8} \\
\Rightarrow R_{g}=R_{e} & =597.86 \mathrm{~N}
\end{aligned}
$$

Resolving horizontally
$\sum X=0$
$S=R_{f} \cos 48.1$
$=597.86 \cos 48.1$
$=399.27 \mathrm{~N}$
Resolving vertically
$\sum Y=0$
$R_{d}=W+R_{f} \sin 48.1$
$=445+597.86 \sin 48.1$
$=890 \mathrm{~N}$

$R_{e}=890 \mathrm{~N}$
$S=399.27 N$

Problem: Two identical rollers each of weight $\mathrm{Q}=445 \mathrm{~N}$ are supported by an inclined plane and a vertical wall as shown in the figure. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C .

$\frac{R_{a}}{\sin 120}=\frac{S}{\sin 150}=\frac{445}{\sin 90}$
$\Rightarrow R_{a}=385.38 \mathrm{~N}$
$\Rightarrow S=222.5 \mathrm{~N}$

Resolving vertically
$\sum Y=0$
$R_{b} \cos 60=445+S \sin 30$
$\Rightarrow R_{b} \frac{\sqrt{3}}{2}=445+\frac{222.5}{2}$
$\Rightarrow R_{b}=642.302 \mathrm{~N}$
Resolving horizontally
$\sum_{R_{c}=R_{b}} X=0$

$R_{c}=R_{b} \sin 30+S \cos 30$
$\Rightarrow 642.302 \sin 30+222.5 \cos 30$
$\Rightarrow R_{c}=513.84 \mathrm{~N}$

Problem:

A weight Q is suspended from a small ring C supported by two cords $A C$ and BC. The cord AC is fastened at A while cord BC passes over a frictionless pulley at B and carries a weight P. If $\mathrm{P}=\mathrm{Q}$ and $\alpha=50^{\circ}$, find the value of β.

Resolving horizontally
$\sum X=0$
$S \sin 50=Q \sin 6$
Resolving vertically
$\sum Y=0$
$S \cos 50+Q \sin B=Q$
$\Rightarrow S \cos 50=Q(1-\cos B)$
Putting the value of S from Eq. 1, weget
$S \cos 50+Q \sin B=Q$
$\Rightarrow S \cos 50=Q(1-\cos B)$
$\Rightarrow Q \frac{\sin B}{\sin 50} \cos 50=Q(1-\cos B)$
$\Rightarrow \cot 50=\frac{1-\cos B}{\sin B}$
$\Rightarrow 0.839 \sin B=1-\cos B$
Squaring both sides,
$0.703 \sin ^{2} B=1+\cos ^{2} B-2 \cos B$
$0.703\left(1-\cos ^{2} B\right)=1+\cos ^{2} B-2 \cos B$
$0.703-0.703 \cos ^{2} b=1+\cos ^{2} B-2 \cos B$
$\Rightarrow 1.703 \cos ^{2} B-2 \cos 8+0.297=0$
$\Rightarrow \cos ^{2} B-1.174 \cos 8+0.297=0$
$\Rightarrow B=63.13$

Method of moments

Moment of a force with respect to a point:

-Considering wrench subjected to two forces P and Q of equal magnitude. It is evident that force P will be more effective compared to Q , though they are of equalmagnitude.
-The effectiveness of the force as regards it is the tendency to produce rotation of a body about a fixed point is called the moment of the force with respect to that point.

- Moment $=$ Magnitude of the force \times Perpendicular distance of the line of action offorce.
\bullet Point O is called moment centre and the perpendicular distance (i.e. OD) is called momentarm.
-Unit isN.m

Theorem of Varignon:

The moment of the resultant of two concurrent forces with respect to a centre in their plane is equal to the alzebric sum of the moments of the components with respect to some centre.

Problem 1:

A prismatic clear of $A B$ of length 1 is hinged at A and supported at B. Neglecting friction, determine the reaction R_{b} produced at B owing to the weight Q of the bar.

Taking moment about point A,

$$
\begin{aligned}
R \times l & =Q \cos \alpha . \\
\Rightarrow R_{b} & =\frac{Q}{\cos \alpha 2}
\end{aligned}
$$

Problem 2:

A bar $A B$ of weight Q and length 21 rests on a very small friction less roller at D and against a smooth vertical wall at A. Find the angle α that the bar must make with the horizontal in equilibrium.

Resolving vertically,

$$
R_{d} \cos \alpha=Q
$$

Now taking moment about A,

$$
\begin{aligned}
& \frac{R_{d} \cdot a}{\cos \alpha}-Q \cdot l \cos \alpha=0 \\
& \Rightarrow \frac{Q \cdot a}{\cos ^{2} \alpha}-Q \cdot l \cos \alpha=0 \\
& \Rightarrow Q \cdot a-Q \cdot l \cos ^{3} \alpha=0 \\
& \Rightarrow \cos ^{3} \alpha=\frac{Q \cdot a}{Q \cdot l} \\
& \Rightarrow \alpha=\cos ^{-1} \quad \sqrt[3]{\frac{a}{l}}
\end{aligned}
$$

Problem 3:

If the piston of the engine has a diameter of 101.6 mm and the gas pressure in the cylinder is 0.69 MPa . Calculate the turning moment M exerted on the crankshaft for the particular configuration.

Area of cylinder

$$
A=\frac{\pi}{4}(0.1016)^{2}=8.107 \times 10^{-3} \mathrm{~m}^{2}
$$

Force exerted on connectingrod,

$$
\begin{aligned}
\mathrm{F} & =\text { Pressure } \times \text { Area } \\
& =0.69 \times 10^{6} \times 8.107 \times 10^{-3} \\
& =5593.83 \mathrm{~N}
\end{aligned}
$$

Now $\alpha=\sin ^{-1} \frac{(178)}{(380)}=27.93$

$$
\begin{aligned}
& S \cos \alpha=F \\
& \Rightarrow S=\frac{F}{\cos \alpha}=6331.29 \mathrm{~N}
\end{aligned}
$$

Now moment entered on crankshaft,

$S \cos \alpha \times 0.178=995.7 N=1 K N$

Problem 4:

A rigid bar AB is supported in a vertical plane and carrying a load Qt its free end. Neglecting the weight of bar, find the magnitude of tensile force S in the horizontal string $C D$.

Taking moment about A ,

$$
\begin{aligned}
& \sum M_{A}=0 \\
& S . \frac{l}{-\cos \alpha=Q . l \sin \alpha 2} \\
& \Rightarrow S=\frac{Q \cdot l \sin \alpha}{l} \\
& \Rightarrow S=2 Q \cdot \tan \alpha
\end{aligned}
$$

MODULE II
 FRICTION AND BASICS STRUCTURAL ANALYSIS

Friction

-The force which opposes the movement or the tendency of movement is called Frictional force or simply friction. It is due to the resistance to motion offered by minutely projecting particles at the contact surfaces. However, there is a limit beyond which the magnitude of this force cannotincrease.
-If the applied force is more than this limit, there will be movement of one body over the other. This limiting value of frictional force when the motion is impending, it is known as LimitingFriction.
-When the applied force is less than the limiting friction, the body remains at rest and such frictional force is called Static Friction, which will be having any value between zero and the limitingfriction.
-If the value of applied force exceeds the limiting friction, the body starts moving over the other body and the frictional resistance experienced by the body while moving is known as Dynamic Friction. Dynamic friction is less than limitingfriction.
-Dynamic friction is classified into following twotypes:
a) Slidingfriction
b) Rolling friction
-Sliding friction is the friction experienced by a body when it slides over the other body.
-Rolling friction is the friction experienced by a body when it rolls over a surface.

- It is experimentally found that the magnitude of limiting friction bears a constant ratio to the normal reaction between two surfaces and this ratio is called Coefficient ofFriction.

Coefficient of friction $=\frac{F}{N}$
where F is limiting friction and N is normal reaction between the contact surfaces.
Coefficient of friction is denoted by μ.
Thus, $\mu=\frac{F}{N}$

Laws of friction

1. The force of friction always acts in a direction opposite to that in which body tends tomove.
2. Till the limiting value is reached, the magnitude of friction is exactly equal to the force which tends to move thebody.
3. The magnitude of the limiting friction bears a constant ratio to the normal reaction between the two surfaces of contact and this ratio is called coefficient offriction.
4. The force of friction depends upon the roughness/smoothness of thesurfaces.
5. The force of friction is independent of the area of contact between the two surfaces.
6. After the body starts moving, the dynamic friction comes into play, the magnitude of which is less than that of limiting friction and it bears a constant ratio with normal force. This ratio is called coefficient of dynamicfriction.

Angle of friction

Consider the block shown in figure resting on a horizontal surface and subjected to horizontal pull P . Let F be the frictional force developed and N the normal reaction. Thus, at contact surface the reactions are F and N . They can be graphically combined to get the reaction R which acts at angle θ to normal reaction. This angle θ called the angle of friction is givenby

$$
\tan \vartheta={ }^{F} \bar{N}
$$

As P increases, F increases and hence θ also increases. θ can reach the maximum value α when F reaches limiting value. At this stage,

$$
\tan \alpha=\frac{F}{N}
$$

This value of α is called Angle of Limiting Friction. Hence, the angle of limiting friction may be defined as the angle between the resultant reaction and the normal to the plane on which the motion of the body is impending.

Angle of repose

Consider the block of weight W resting on an inclined plane which makes an angle θ with the horizontal. When θ is small, the block will rest on the plane. If θ is gradually increased, a stage is reached at which the block start sliding down the plane. The angle θ for which the motion is impending, is called the angle of repose. Thus, the maximum inclination of the plane on which a body, free from external forces, can repose is called Angle of Repose.

Resolving vertically,
$\mathrm{N}=\mathrm{W} \cdot \cos \theta$

Resolving horizontally,
$\mathrm{F}=\mathrm{W} \cdot \sin \theta$
Thus, $\tan \vartheta={ }^{F}$
\bar{N}
If ϕ is the value of θ when the motion is impending, the frictional force will be limiting friction and hence,

$$
\tan \phi={ }^{F} \frac{}{N}
$$

$=\mu=\tan \alpha$
$\Rightarrow \phi=\alpha$
Thus, the value of angle of repose is same as the value of limiting angle of repose.

Cone of friction

-When a body is having impending motion in the direction of force P, the frictional force will be limiting friction and the resultant reaction R will make limiting angle α with thenormal.
-If the body is having impending motion in some other direction, the resultant reaction makes limiting frictional angle α with the normal to that direction. Thus, when the direction of force P is gradually changed through 360°, the resultant R generates a right circular cone with semi-central angle equal to α.

Problem 1: Block A weighing 1000N rests over block B which weighs 2000 N as shown in figure. Block A is tied to wall with a horizontal string. If the coefficient of friction between blocks A and B is 0.25 and between B and floor is $1 / 3$, what should be the value of P to move the block (B), if
(a) P ishorizontal.
(b) P acts at 30° upwards tohorizontal.

Solution: (a)

Considering block A,
$\sum V=0$
$N_{1}=1000 \mathrm{~N}$
Since F_{1} is limiting friction,
$\frac{F_{1}}{N_{1}}=\mu=0.25$
$F_{1}=0.25 N_{1}=0.25 \times 1000=250 \mathrm{~N}$
$\sum H=0$
$F_{1}-T=0$
$T=F_{1}=250 \mathrm{~N}$
Considering equilibrium of block B,
$\sum V=0$
$N_{2}-2000-N_{1}=0$
$N_{2}=2000+N_{1}=2000+1000=3000 \mathrm{~N}$
$\frac{F_{2}}{N_{2}}=\mu=1$
$F_{2}=0.3 \mathrm{~N}_{2}=0.3 \times 1000=1000 \mathrm{~N}$

$$
\begin{aligned}
& \sum H=0 \\
& P=F_{1}+F_{2}=250+1000=1250 \mathrm{~N}
\end{aligned}
$$

(b) When P is inclined:

$$
\begin{aligned}
& \sum V=0 \\
& N_{2}-2000-N_{1}+P \cdot \sin 30=0 \\
& \Rightarrow N_{2}+0.5 P=2000+1000 \\
& \Rightarrow N_{2}=3000-0.5 P
\end{aligned}
$$

$$
F={ }_{2}=\underline{N}_{2}{ }_{\overline{3}}^{\frac{1}{3}}(3000-0.5 P)=1000-\frac{0.5}{} \frac{P}{3}
$$

$$
\sum H=0
$$

$$
\begin{aligned}
& P \cos 30=F_{1}+F_{2}\left(\begin{array}{l}
0.5 \\
\Rightarrow P \cos 30=250+ \\
1000- \\
\rightarrow P^{2}
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow P\left(\cos 30+\frac{{ }^{0.5} P}{3}\right) \underset{=}{=} 1250
$$

$$
\Rightarrow P=1210.43 \mathrm{~N}
$$

Problem 2: A block weighing 500N just starts moving down a rough inclined plane when supported by a force of 200 N acting parallel to the plane in upward direction. The same block is on the verge of moving up the plane when pulled by a force of 300 N acting parallel to the plane. Find the inclination of the plane and coefficient of friction between the inclined plane and theblock.

$$
\begin{aligned}
& \sum V=0 \\
& N=500 \cdot \cos \vartheta \\
& F_{1}=\mu N=\mu .500 \cos \vartheta
\end{aligned}
$$

$\sum H=0$
$200+F_{1}=500 . \sin \vartheta$
$\Rightarrow 200+\mu .500 \cos \vartheta=500 . \sin \vartheta$
$\sum V=0$
$N=500 . \cos \vartheta$
$F_{2}=\mu N=\mu .500 \cdot \cos \vartheta$
$\sum H=0$

$500 \sin \vartheta+F_{2}=300$
$\Rightarrow 500 \sin \vartheta+\mu .500 \cos \vartheta=300$
Adding Eqs. (1) and (2), we get
$500=1000 . \sin \theta$
$\sin \theta=0.5$
$\theta=30^{\circ}$

Substituting the value of θ in Eq. 2,
$500 \sin 30+\mu .500 \cos 30=300$
$\mu=\frac{50}{500 \cos 30}=0.11547$

Parallel forces on a plane

Like parallel forces: Coplanar parallel forces when act in the same direction. Unlike parallel forces: Coplanar parallel forces when act in different direction. Resultant of like parallel forces:

Let P and Q are two like parallel forces act at points A and $\mathrm{B} . \mathrm{R}=\mathrm{P}$ $+\mathrm{Q}$

Resultant of unlikeparallelforces:

$\mathrm{R}=\mathrm{P}-\mathrm{Q}$
R is in the direction of the force havinggreatermagnitude.

Couple:

Two unlike equal parallel forces form a couple.

The rotational effect of a couple is measured by its moment.

Moment $=\mathrm{P} \times 1$

Sign convention: Anticlockwise couple (Positive)
Clockwise couple (Negative)

Problem 1 :A rigid bar CABD supported as shown in figure is acted upon by two equal horizontal forces P applied at C and D . Calculate the reactions that will be induced at the points of support. Assume $1=1.2 \mathrm{~m}, \mathrm{a}=0.9 \mathrm{~m}, \mathrm{~b}=0.6 \mathrm{~m}$.

Taking moment about A,
$R_{a}=R_{b}$
$R_{b} \times l+P \times b=P \times a$
$\Rightarrow R_{b}=\frac{P(0.9-0.6)}{1.2}$
$\Rightarrow R_{b}=0.25 P(\uparrow)$
$\Rightarrow R_{a}=0.25 P(\downarrow)$

Problem 2: Owing to weight W of the locomotive shown in figure, the reactions at the two points of support A and B will each be equal to $\mathrm{W} / 2$. When the locomotive is pulling the train and the drawbar pull P is just equal to the total friction at the points of contact A and B , determine the magnitudes of the vertical reactions R_{a} and R_{b}.

$\sum V=0$
$R_{a}+R_{b}=W$
Taking moment about B,

$$
\begin{aligned}
& \sum M_{B}=0 \\
& R_{a} \times 2 a+P \times b=W \times a \\
& \Rightarrow R_{a}=\frac{W \cdot a-P \cdot b}{2 a} \\
& \therefore R_{b}=W-R_{a} \\
& \left.\Rightarrow R_{b}=W-\frac{(W \cdot a-P \cdot b)}{2 a}\right) \\
& \Rightarrow R_{b}=\frac{W \cdot a+P \cdot b}{2 a}
\end{aligned}
$$

Problem 3: The four wheels of a locomotive produce vertical forces on the horizontal girder $A B$. Determine the reactions R_{a} and R_{b} at the supports if the loads $P=90 \mathrm{KN}$ each and $\mathrm{Q}=72$ KN (All dimensions are in m).

Problem 4: The beam AB in figure is hinged at A and supported at B by a vertical cord which passes over a frictionless pulley at C and carries at its end a load P . Determine the distance x from A at which a load Q must be placed on the beam if it is to remain in equilibrium in a horizontal position. Neglect the weight of thebeam.

FBD

Problem 5: A prismatic bar AB of weight $\mathrm{Q}=44.5 \mathrm{~N}$ is supported by two vertical wires at its ends and carries at D a load $P=89 \mathrm{~N}$ as shown in figure. Determine the forces S_{a} and S_{b} in the two wires.

$\mathrm{Q}=44.5 \mathrm{~N}$
$\mathrm{P}=89 \mathrm{~N}$
Resolving vertically,
$\sum V=0$
$S_{a}+S_{b}=P+Q$

$\Rightarrow S_{a}+S_{b}=89+44.5$
$\Rightarrow S_{a}+S_{b}=133.5 \mathrm{~N}$

$$
\begin{aligned}
& \sum_{S_{A}}^{S} M_{A}=0 \\
& \\
& \Rightarrow S_{b}=P \times \frac{P}{4} Q_{-}+Q \times{ }^{l}-\frac{2}{2} \\
& \Rightarrow S_{b}=\frac{89}{4}+\frac{44.5}{2} \\
& \Rightarrow S_{b}=44.5 \\
& \therefore S_{a}=133.5-44.5 \\
& \Rightarrow S_{a}=89 \mathrm{~N}
\end{aligned}
$$

MODULE III

CENTROID AND CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

Centre of gravity

Centre of gravity: It is that point through which the resultant of the distributed gravity force passes regardless of the orientation of the body in space.

As the point through which resultant of force of gravity (weight) of the bodyacts.
Centroid: Centrroid of an area lies on the axis of symmetry if it exits.
Centre of gravity is applied to bodies with mass and weight and centroid is applied to plane areas.
$x_{c}=\sum A_{i} x_{i} y_{c}$
$=\sum A_{i} y_{i}$

$x_{c}=\frac{A_{1} x_{1}+A_{2} x_{2}}{A_{1}+A_{2}}$
$y_{c}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}}$

$\underset{c}{x=y} \quad{ }_{c}=\frac{\text { Moment of area }}{\text { Totalarea }}$
$x_{\bar{c}} \frac{\int x \cdot d A}{A}$
$y_{\overline{\bar{c}}} \frac{\int y \cdot d A}{A}$

Problem 1: Consider the triangle $A B C$ of base ' b ' and height ' h '. Determine the distance of centroid from the base.

Let us consider an elemental strip of width ' b_{1} ' and thickness 'dy'.

Area of element EF $\begin{array}{rl}(\mathrm{dA})= & \mathrm{b}_{1} \times\left(\mathrm{dy}_{y}\right) \\ =b & 1-{ }^{2} d y\end{array}$ (\bar{h})
$y=\frac{\int y \cdot d A}{\left.h A_{(} \quad y\right)}$
$=\frac{\int_{0^{\prime}} y \cdot b \mid{ }^{1-}{ }_{h}{ }^{-} d y}{1}{ }_{b . h}$

2
$=\frac{2\left\lceil h^{2}\right.}{h}\left\lfloor 2-\frac{\left.h^{3}\right\rceil}{3}\right\rfloor$
$=\frac{2}{2} \frac{\times}{h} h^{2}-$
$=\frac{h}{3}$
3 Therefore, y_{c} is at a distance of $\mathrm{h} / 3$ from base.

Problem 2: Consider a semi-circle of radius R. Determine its distance from diametral axis.

Due to symmetry, centroid ' y_{c} ' must lie on Y-axis.
Consider an element at a distance ' r ' from centre ' o ' of the semicircle with radial width dr.

Area of element $=(r . d \theta) \times d r$
Moment of area about $\mathrm{x}=\int y . d A$
$=\int_{\delta_{0}}^{\pi R}(r . d \vartheta) \cdot d r \times(r \cdot \sin \vartheta)$
πR
$=\iint_{0} r_{0}^{2} \sin \vartheta . d r \cdot d \vartheta$
$=\int_{\substack{d \\ \pi}}^{\pi R}\left(r^{3} 7^{R} \cdot d r\right) \cdot \sin \vartheta \cdot d \vartheta$
$\left.=\left.\int_{d}\right|_{3}\right\rfloor_{0} \cdot \sin \vartheta \cdot d \vartheta$

$=\frac{R^{3}}{3}[1+1]$
$=\frac{2}{3} R^{3}$
$y_{\bar{c}}=\frac{\text { Moment of area }}{\text { Totalarea }}$

$$
\begin{aligned}
& \left.=\frac{2}{\pi R^{2}} \right\rvert\, R^{3} \\
& =\frac{4 R}{3 \pi} \\
& =
\end{aligned}
$$

Centroids of different figures

Shape	Figure	\bar{x}	\bar{y}	Area
Rectangle		$\frac{b}{2}$	$\frac{d}{2}$	bd
Triangle		0	$\frac{h}{3}$	$\frac{b h}{2}$
Semicircle		0	$\frac{4 R}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter circle		$\frac{4 R}{3 \pi}$	$\frac{4 R}{3 \pi}$	$\frac{\pi r^{2}}{4}$

Problem 3: Find the centroid of the T-section as shown in figure from the bottom.

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
2000	0	110	10,000	22,0000
2000	0	50	10,000	10,0000
4000			20,000	32,0000

$$
\begin{aligned}
& y_{c}=\frac{\sum A_{i} y_{i} A_{1} y_{1}+A_{2} y_{2}-32,0000}{A_{i 1}}{ }_{2} A+A^{=} \quad 4^{=} 00^{8} 0
\end{aligned}
$$

Due to symmetry, the centroid lies on Y-axis and it is at distance of 80 mm from the bottom.
Problem 4: Locate the centroid of the I-section.

As the figure is symmetric, centroid lies on y-axis. Therefore, $x=0$

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
2000	0	140	0	280000
2000	0	80	0	160000
4500	0	15	0	67500

$$
y_{\overline{\bar{C}}} \frac{\sum A_{i} y_{i}}{A_{i 1}}=\frac{A_{1} y_{1}+A_{2} y_{2}+A_{3} y_{3}}{{ }_{3}+A+A}=59.71 \mathrm{~mm}
$$

Thus, the centroid is on the symmetric axis at a distance 59.71 mm from the bottom.
Problem 5: Determine the centroid of the composite figure about $x-y$ coordinate. Take $x=40$ mm .

$\mathrm{A}_{1}=$ Area of rectangle $=12 \mathrm{x} .14 \mathrm{x}=168 \mathrm{x}^{2}$
$A_{2}=$ Area of rectangle to be subtracted $=4 x \cdot 4 x=16 x^{2}$

$$
\begin{array}{lll}
\mathrm{A}_{3}=\text { Area of semicircle to be subtracted }= & \mathrm{c}^{2}=\frac{\pi 4 x^{2}}{2}=25.13 x^{2} \\
\mathrm{~A}_{4}=\text { Area of quatercircle to be subtracted }= & -^{2}={ }^{2} 4 x^{2} & \\
=12.56 x^{2}
\end{array}
$$

$$
A_{5}=\text { Area of triangle }=44^{1} \times 6 x * 4 x=12 x^{2}
$$

$$
2
$$

Area ($\mathbf{A}_{\mathbf{i}}$)	$\mathrm{x}_{\mathbf{i}}$	y_{i}	$\mathbf{A}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\mathbf{A}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$
$\mathrm{A}_{1}=268800$	$7 \mathrm{x}=280$	$6 \mathrm{x}=240$	75264000	64512000
$\mathrm{A}_{2}=25600$	$2 \mathrm{x}=80$	$10 \mathrm{x}=400$	2048000	10240000
$\mathrm{A}_{3}=40208$	$6 \mathrm{x}=240$	$\begin{gathered} 4 \times-4 x \\ 3 \pi \end{gathered}=67.906$	9649920	2730364.448
$\mathrm{A}_{4}=20096$	$\begin{aligned} & 10 x+\binom{4 x-4 \times 4 x}{3 \pi} \\ & =492.09 \end{aligned}$	$\begin{aligned} & 8 x+\left(\begin{array}{ll} 4 x-{ }^{4 \lambda+x} \\ & 3 \pi \end{array}\right) \\ & =412.093 \end{aligned}$	9889040.64	8281420.926
$\mathrm{A}_{5}=19200$	$\begin{aligned} & 14 x+\frac{6 x}{3}=16 x \\ & =640 \end{aligned}$	$\frac{4 x}{3}=53.33$	12288000	1023936

$x c=\frac{A_{1} \underline{x}_{1}-A_{2} \underline{x}_{2}-A_{3} \underline{x}_{3}-A_{4} \underline{x}_{4}+A_{5} \underline{x_{5}} \underline{-}}{A_{1}-A-A-A+A} \underset{{ }_{3}}{ }=326.404 \mathrm{~mm}$

$$
=A_{c} A_{1} \underline{y}_{1}-A_{2} y_{2}-A_{3} y_{3}-A_{4} y_{4}+A_{5} y_{5}=219.124 \mathrm{~mm}
$$

Problem 6: Determine the centroid of the following figure.

$\mathrm{A}_{1}=$ Area of triangle $=\frac{1}{2} \times 80 \times 80=3200 \mathrm{~m}^{2}$
$\mathrm{A}_{2}=$ Area of semicircle $=\frac{\pi d^{2}}{\frac{8}{\pi D^{2}}}-\frac{\pi R^{2}}{2} \quad 2513.274 m$
$\mathrm{A}_{3}=$ Area of semicircle $-=1256.64 \mathrm{mz}$

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
3200	$2 \times(80 / 3)=53.33$	$80 / 3=26.67$	170656	85344
2513.274	40	$\frac{-4 \times 40}{3 \pi}=-16.97$	100530.96	-42650.259
		0		
1256.64	40	50265.6	0	

$$
\begin{aligned}
& x=A_{1} x_{1}+A_{2} x_{2}-A_{3} x_{3}=49.57 \mathrm{~mm} \\
& \begin{array}{c}
A{ }_{1}+A \pm A \\
A y+A^{2} y \\
{ }^{2}-A y_{3}^{3}
\end{array}
\end{aligned}
$$

Problem 7: Determine the centroid of the following figure.

$\mathrm{A}_{1}=$ Area of the rectangle
$\mathrm{A}_{2}=$ Area of triangle
$\mathrm{A}_{3}=$ Area of circle

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
30,000	100	75	3000000	2250000
3750	$100+200 / 3$ $=166.67$	$75+150 / 3$ $=125$	625012.5	468750
7853.98	100	75	785398	589048.5

$$
\begin{aligned}
& x_{\bar{c}}^{\sum=} \sum_{i} A_{i} x_{i}=\frac{A_{1} x_{1}-A_{2} x_{2}-A_{3} x_{3}=86.4 \mathrm{~mm}}{A-A-A} \\
& y=\underline{\sum_{1}}=\frac{A_{i} y_{i}}{A_{1} y_{1}-A_{2} y_{2}-A_{3} y_{3}}=64.8 \mathrm{~mm} \\
& { }^{1}-A-2 A
\end{aligned}
$$

Numerical Problems (Assignment)

1. An isosceles triangle ADE is to cut from a square ABCD of dimension ' a '. Find the altitude ' y ' of the triangle so that vertex E will be centroid of remaining shadedarea.

2. Find the centroid of the followingfigure.

3. Locate the centroid C of the shaded area obtained by cutting a semi-circle of diameter ' a ' from the quadrant of a circle of radius' a '.

4. Locate the centroid of the compositefigure.

Truss/ Frame: A pin jointed frame is a structure made of slender (cross-sectional dimensions quite small compared to length) members pin connected at ends and capable of taking load at joints.

Such frames are used as roof trusses to support sloping roofs and as bridge trusses to support deck.

Plane frame: A frame in which all members lie in a single plane is called plane frame. They are designed to resist the forces acting in the plane of frame. Roof trusses and bridge trusses are the example of plane frames.

Space frame: If all the members of frame do not lie in a single plane, they are called as space frame. Tripod, transmission towers are the examples of spaceframes.

Perfect frame: A pin jointed frame which has got just sufficient number of members to resist the loads without undergoing appreciable deformation in shape is called a perfect frame. Triangular frame is the simplest perfect frame and it has 03 joints and 03members.

It may be observed that to increase one joint in a perfect frame, two more members are required. Hence, the following expression may be written as the relationship between number of joint j, and the number of members m in a perfect frame.

$$
\mathrm{m}=2 \mathrm{j}-3
$$

(a) When LHS = RHS, Perfectframe.
(b) When LHS $<$ RHS, Deficientframe.
(c) When LHS $>$ RHS, Redundantframe.

Assumptions

The following assumptions are made in the analysis of pin jointed trusses:

1. The ends of the members are pin jointed(hinged).
2. The loads act only at thejoints.
3. Self weight of the members isnegligible.

Methods of analysis

1. Method ofjoint
2. Method ofsection

Problems on method of joints

Problem 1: Find the forces in all the members of the truss shown in figure.

$\tan \vartheta=1$
$\Rightarrow \vartheta=45$
Joint C
$S_{1}=S_{2} \cos 45$
$\Rightarrow S_{1}=40 K N($ Compression $)$
$S_{2} \sin 45=40$
$\Rightarrow S_{2}=56.56 \mathrm{KN}$ (Tension)

Joint D

$S_{3}=40 \mathrm{KN}$ (Tension)
$S_{1}=S_{4}=40 K N$ (Compression) Joint

B

Resolving vertically,
$\sum V=0$
$S_{5} \sin 45=S_{3}+S_{2} \sin 45$

$$
\Rightarrow S_{5}=113.137 K N \text { (Compression) }
$$

Resolving horizontally,

$$
\begin{aligned}
& \sum_{S_{6}} H=S_{5} \cos 45+S_{2} \cos 45 \\
& \Rightarrow S_{6}=113.137 \cos 45+56.56 \cos 45 \\
& \Rightarrow S_{6}=120 K N \text { (Tension) }
\end{aligned}
$$

Problem 2: Determine the forces in all the members of the truss shown in figure and indicate the magnitude and nature of the forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m .

Taking moment at point A ,
$\sum M_{A}=0$
$R_{d} \times 4=40 \times 1+60 \times 2+50 \times 3$
$\Rightarrow R_{d}=77.5 \mathrm{KN}$
Now resolving all the forces in vertical direction,
$\sum V=0$
$R_{a}+R_{d}=40+60+50$
$\Rightarrow R_{a}=72.5 \mathrm{KN}$

Joint A

$\sum V=0$
$\Rightarrow R_{a}=S_{1} \sin 60$
$\Rightarrow S_{1}=83.72 K N$ (Compression)

$\sum H=0$
$\Rightarrow S_{2}=S_{1} \cos 60$
$\Rightarrow S_{\mathrm{l}}=41.86 K N$ (Tension)

$\underline{\text { Joint D }}$

$\sum V=0$
$S_{7} \sin 60=77.5$
$\Rightarrow S_{7}=89.5 K N$ (Compression)
$\sum H=0$
$S_{6}=S_{7} \cos 60$
$\Rightarrow S_{6}=44.75 K N$ (Tension)

Joint B
$\sum V=0$
$S_{1} \sin 60=S_{3} \cos 60+40$
$\Rightarrow S_{3}=37.532 \mathrm{KN}$ (Tension)
$\sum H=0$
$S_{4}=S_{1} \cos 60+S_{3} \cos 60$
$\Rightarrow S_{4}=37.532 \cos 60+83.72 \cos 60$
$\Rightarrow S_{4}=60.626 K N$ (Compression)
Joint C
$\sum V=0$
$S_{5} \sin 60+50=S_{7} \sin 60$
$\Rightarrow S_{5}=31.76 K N$ (Tension)

Joint B

Incaseof analysing a plane truss, using method of section, after dotermins the support reactions a section line is drawn passing through. not norethan three mombers in which forces are unknown, such that the entire frame is cut into two separate parts.
Each part should be in equilibrium under the action of loads, reactions and the forces in the members.
Method of section is preferred for the following cases:
(i) analysis of large truss in which fores in only few members are required
(ii) If method of joint fails tostart or proved with analys is fornotsetting a joint with only two untanan forces.
Example 1.

k
$7 \times 4=28 \mathrm{~m}$

Determine the force in the members FH, HH, and $G I$ in the truss Due to symmetry $R_{a}=R_{b}=\frac{1}{2} \times$ tot -1 dovinuard load

$$
=\frac{1}{2} \times 70: 35 \mathrm{kN} .
$$

T K. King the section to the left of the cut.

Negativesign indicates that
opposite $i \cdot e$ itis compreasive in noture
N......o

$$
12-k / v \mid{ }^{\prime} 9_{\ldots, \ldots . \text { I) }} \quad \mathrm{C}_{e}
$$ verticall $\Sigma y=0$

$$
\begin{aligned}
& =-y \quad f=; 11= \\
& \text { g:-go }
\end{aligned}
$$

$$
\begin{aligned}
& \text { F-FH-1 +-',H- }=-\quad f-1
\end{aligned}
$$

e- 2.

Using thethad of sections cl" .Je,. rri, ,...e f->...I?. arialforves O in bors l.,2aricl g_{-}

$$
\boldsymbol{T}, . l\left(;-. \quad \text {.e } \quad t_{4}\right.
$$

(-ve sign indicates direstion o) force Dillbe oftisite and it Whllep tev, "U "hot.

$$
\begin{aligned}
& .2 . u-t \quad 0\left(\ldots . . \mu^{\mu}\right. \\
& \Rightarrow s,=\frac{\mu}{\cos \alpha}
\end{aligned}
$$ compressi re in nature horizontally. $\Sigma x=0$.

(tansion)

$$
\sum M_{E}=n
$$

\qquad c-

" \% " "1s b"

$$
=) \quad v: \quad \text {,r,;, } \quad, P^{\prime}--" 177_{I} \quad \text { ل">-0 }
$$

$$
\mathrm{f}, \ldots \ldots, \quad o=-2 r-\left(\int_{\mathrm{si}} i . \mathrm{S}-\cdot \cdot,, 20\right.
$$

д) $s_{1}=\frac{2--r T}{\frac{.33 / 2}{5,-\cdots, \ldots, 0}}$
J r.ea.,..e/0;.., \quad J....E),..; o,-.,f-anx

NP-J r.ea.,...e/0;..., J....E),..; o,-.,f-anx .Xo •

$$
\begin{aligned}
\frac{\sqrt{3}}{2} s_{2} & =1.73 p-2 \sqrt{3} p \\
& =-1.73 p
\end{aligned}
$$

$\Rightarrow S_{2}=-\frac{1-7 \cdot 3 \cdot f^{\prime}}{\underline{v^{\prime}} 3}=-P$ (-ve sigh indicates the direction is opposite and it is compnessi Now $s_{1}=4 \mathrm{P} P=3+$ (tansion):

$$
\begin{aligned}
& -s<0 \cdot{ }^{17} \mathrm{~S} \quad,--P \cdot x Q \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (-. V.e 11' |"'|, ,"'..., J,'-t....P- c/ ,', e..R. 'tJ Im }
\end{aligned}
$$

We have $\tan \left(\frac{1.5}{3}\right) \Rightarrow \theta=26.56^{\circ}$
oonsiderin Jr \quad b....,....

2 I., . Jn<._N

b AJ2
J.f?.

 L...."1 f-

$$
\Leftrightarrow \Rightarrow s_{3}=0
$$

${ }^{3} 2$
0.5

Aesignment

VSins method of jointand methed of suetion find the arial force in the ber x.

Method of Joint
Cons idering the whole struethere and taking moment aboret $A \quad \sum M_{A}=0$.

$$
\begin{aligned}
& R_{B} \times 3=P \times 1.5 \sin 60 \\
& \Rightarrow R_{B}=\frac{\sqrt{3}}{4}+.
\end{aligned}
$$

Q.1 (6.3) calculate the relation beth active forces P and Q for equilibrium of system of bars. The bars are soerranged that they form identical rhombuses,

Let $Q=$ tensthor each sideof bar.
$\theta=$ angle made by each sided the thrombus
Distance of P from fixed point $A=6 R \cos \theta$

$$
=2 l \cos \theta
$$

$L R t$ the virtreal displacement of P is $B-B$ '

$$
B-B^{\prime}=d x=\frac{d}{10}(62 x \theta=-6 l \sin \theta d \theta
$$

Similarly the virteral displacement of Q is $C \cdot C$ I

$$
=d \pi_{2}=-2 l \sin \theta d \theta
$$

Applying principle of virtual work. $\sum W=0$

$$
\begin{aligned}
& P \cdot d x_{1}=Q_{1} d x_{2} \\
& \Rightarrow \quad \operatorname{p}(6 l \sin \theta d \theta)=\theta(2 l \sin \theta d \theta) \\
& \Rightarrow \quad \theta=\frac{\theta}{3} \\
& (A n s) \text {. }
\end{aligned}
$$

0.2

A prismatic bor AB of length l and wt. \& stands in a vertical plane ant is seepperted by smooth surfaces at B A and B, Using principteof virtu al woo find the magnitude of horizontal force P applied at A if the boris in equilibrium,

Lef the horizontal distance ? $>=$? INM=, J:) $/ 1-$

$$
l=g_{2} g_{\text {ail }} \text { aine- }
$$

$c c^{\prime}=d y=\quad .!/ L$ D.It \&-d g.
Ne>r-ro, of r "t>""s fa and R_{b} hare no wark alonsthe
 $-?=1, t-\quad \wedge C, /($
$-P t \quad t_{-} \quad c-1$ n $\quad: \quad 5 J . . L$ tr $=1$
$\Rightarrow \quad P=\quad-\quad=1$
Q.3 (6.14)
find arial fores in the barcb of the simple trees by using methad of virtual work.

$$
\text { 工. } 3 \text { - votorce in b }
$$

$L Q \ldots$, $\$$, - vorcein barca ,
<2-8- \quad q,.,,..,
p8
$D-f: \ldots$ \qquad !?
$\left\{!\right.$, ,.r) $C J_{(. L J--~ ' I--+>~}$
aeti,..... 0-1 t/
$R . .$. ,J -P-
$g I=-f j=э э$
a.. II V-, O_g FB angular ohisploempent
$o /$.
"2 $t ;--()\lrcorner$
!: Bib !.. .a
$\mathrm{Q},-\mathrm{s},:: \quad \mathrm{t}_{2}^{t} \quad$ al O
$f: \quad \mathrm{h}$

$$
.1_{2-} \cdot,, \quad-\quad \text { g.X I., CJ }
$$

$1 / \overline{L_{2}}$

$$
\therefore-p . R_{.0} \quad \Rightarrow \quad R_{b}=\quad-\quad-1 \quad-\quad-1
$$

Substitution $\frac{e_{-}, \text {rol }}{P l}$ of R_{b} in eq. $\left.C_{1}\right)$

$$
\begin{aligned}
& \text { Using principteot } V \text { reactions }
\end{aligned}
$$

$\underline{0.4}(6.15)$ Let the truse is virtwal
oli'ifl
$-Z^{\prime},-J .!\therefore \underline{O}$.
$l 1$
\qquad

$$
\begin{aligned}
& \left.\begin{array}{c}
k^{\prime}-4-+1 \\
w \\
\neq n \\
\\
\Rightarrow R_{a}=P
\end{array} \right\rvert\,
\end{aligned}
$$

modipada to bigbozar
near jas rrath mandir righthandside

- Inv and fy ate also known as secund momentoy inertia area about the ane as itis distance is squared from corrosponding anis.
wait
Unity moment of inertia of area is repressed ac m 4 or mm 4 .
Moment of inertia of Plane figures:-

considering arectongteof
width b and depth of,
Moment of inertia about controidal acis $r \cdot x$ parallel to the shortside ie b
Now considering an elementary
strip of width dy strip of width dy
Moment of inertia of the elemental st ip aboutcentroidal aris $x x$ is

$$
\begin{aligned}
I_{x x} & =y^{2} d A \\
& =y^{2} b d y
\end{aligned}
$$

So moment of inertia of 0

$$
\begin{aligned}
& i x=\int_{-d / 2}^{y^{2} b d y}=b\left|\frac{y^{3}}{3}\right|_{-\frac{d}{2}}^{d / 2}=b\left[\frac{d^{3}}{24}+\frac{d^{3}}{24}\right] \\
& \Rightarrow \quad I \times x=\frac{b d^{3}}{12}
\end{aligned}
$$

entice area

Consider a smallelementory str
atodistance y from the bas h of thicknees dy? Let dA is thearpa of strip

$\mathrm{k}-\mathrm{b}=21$

$$
\text { And } b_{1}=\frac{((h-y)}{h} \times b \text {. }
$$

Moment of inertia of strip abrect bace $A B$

$$
\begin{aligned}
& =y^{2} d A=y^{2} b, d y \\
& =y^{2} \frac{(h-y)}{h} \cdot b d y
\end{aligned}
$$

\therefore Moment of ine tio of the triongle about $A B$

$$
\begin{aligned}
& \quad L_{A B}=\int_{0}^{h} \frac{y^{2}(h-y) b d y}{h}=\int_{0}^{h}\left(y^{2}-\frac{y^{3}}{h}\right) b d y \\
& =b\left[\frac{y^{3}}{3}-\frac{y^{4}}{4 h}\right]_{0}^{h}=b\left[\frac{h^{3}}{3}-\frac{h^{4}}{4 h}\right] \\
& =b\left[\frac{h^{3}}{3}-\frac{h^{3}}{4}\right]=\frac{b h^{3}}{12} \\
& 1 / I_{A B}=\frac{b h^{3}}{12}
\end{aligned}
$$

/",e |-1-1'9

C^{\prime} '...'>) f e-riJelo.o-fJ: 11 --, ' \mathbf{n},

 a.l-a"'; 1 J- o l.1 u_ot fo Ke..
 a cl (I i's l.., Ke_ $f / c,--, e_{-}$○area.

$$
\begin{aligned}
& r_{\text {:it: }}=r \text {, 17/ } \\
& \text { L-t _ } \quad 2 . r r^{2}=J+ \\
& \text { 'z..(: }: \text { PTr,,;") ol t- } \\
& =\quad \text { "2:... 2cJ } \pm \text { T } 2 l: \text { a.ob }+ \\
& 1 \quad[-4 . z \quad \text { Lpyf-cyy }]
\end{aligned}
$$

Parallel apis theorem:-
 "''i CL1J S

$$
\begin{aligned}
& \text { ai } \\
& \text { af ei,=- I f2_) Le..r,/-r-\&--)'.../ a / cvJ.s. } \\
& \text { 9-r-, Cl f4, } e_{-} \quad \text { r-r,-Gj u_e }
\end{aligned}
$$

£

$$
\underline{l} \quad \text { f } C_{,}^{\prime}, \text { t- }+\quad \text { Q... }
$$

Lx.- t

$$
0---->r
$$

$$
+-,-11-11 \mid \quad D-1-f s .41 \text {-a of ,_, '"' }) ;-, R_{-}
$$

Nuf Cf!

tJtuiril .f>Jvi' $r^{\prime \prime \prime} \quad f-1 J Q \quad$ Q.....6-nnetrin $\quad 0$---re...A \quad,"'" $\mid h$
Jti o1 12-

A-2. $\quad l^{\prime \prime}$ to AfJ! $V \quad \therefore \quad J^{\prime \prime} f \mathrm{~N} \quad \mathbf{n - i} \mathbf{n}^{2}$

$$
\text { - }=T, 11, i 7 l^{\prime}(, \ldots,,,)-r--(.: i \text { s } 6 \text { bl } 6-l . t, 7 \mathrm{r}, n,-,, ; i .111)
$$

$$
\frac{|\mathrm{e}\rangle-\mathrm{y} \mid}{!2-} \underline{51,3}{ }^{1} 7 \quad \underline{4}_{0^{-}} \ln ^{\log } \quad \cdots, \quad 2812500+11666.66667
$$

g-, ,tubb, tb7 '"') i

so

- 31, rrb rn
(MJ)
Q. 2 Determine the Mi of Lisection abret itt's centridal ares parallel to the less. Alsofind the polarmoment of inertia.
We have $A_{1}=125 \times 10=1250 \mathrm{~mm}^{2}$

$$
A_{2}=75 \times 10=750 \mathrm{~mm}^{2}
$$

Totol area $A_{1}+A_{2}=2000 \mathrm{~mm}^{2}$.Ph./-, 4

$$
+r t .=t=16 \quad Y 12 .
$$

Jh"FA 2.....

$$
-\mathrm{f},\left(77 ?-\frac{6 . R}{!::\rangle} \frac{T 75:: 2<i}{t: J r o} \underline{s^{\prime \prime}}=40.9375 \mathrm{~mm}\right.
$$

$$
!=1 \underline{\text { t:nJ }} \frac{\operatorname{s-r} 7 ? 291 ¥}{\text { J. ITV }} \quad \text { э, } 1 g \quad \text { ""') }
$$

$t] \quad$ 7,--: \bullet BT 7 9r)く ("i •.")17£- ,2,..3
$\frac{(1627604.167+581176}{3183658.854 \mathrm{~mm} /}{ }^{7578}{ }^{\text {fl }}$ cs $s=0 i$,
t. \&-b;J. 7,9297)

Polar moment of inertia $I_{z z}=I_{x x}+K_{y y}$

$$
=4 \quad \text { (Ans) }
$$

[).£J.•, m/ ...,, Th "1L Gft," CJ,..,m $+\mathrm{r} ; \mathrm{tc}, 1 \mathrm{~L}$ £er./-!, aboue

$$
3 / 4 \quad ;, \quad 2 X^{\prime} / ;, 1=15>f, 1 \text { rri..., } \quad \underline{\text { ro }} \cdot-
$$

$$
A_{3}=200 \times 9=1800 \mathrm{~mm}^{2}
$$

centridal $>-h$
17.-.:-_
 mine

f- (\quad; ; / /5z t ${ }_{2} b \quad J S_{6}{ }_{\text {'f }} \mathbf{5 b}$)
2Gt'1:\{1\%I,-ro tb'J72rro 2./'? t2\&JLj 116cro

$$
\left.\therefore-\quad!r f \sigma-1 \quad-1: 3 \quad \mid T) f^{\prime} Y "\right) r
$$

$$
20 \frac{0}{12}, \cdots \frac{232 \times 6 \cdot 7^{3}}{12}+\frac{9 \times 200^{3}}{12}
$$

$$
\begin{aligned}
& \text { "'I, } 7 \mathrm{~s} ; \mathrm{m} \quad 1
\end{aligned}
$$

:...::7127sv16, M' mrril

c
aboct ixe anis.
of the shaded section a bout ак m i of triangle $A B C$ about $x e$
$+M \perp$ of senicircle $A C S$ about $x x$ - mi of circle
$\frac{100 \times 100^{3}}{12}+\frac{\pi \times 100^{4}}{128}-\frac{\pi \times 504}{64}$
$6^{j-11 \Delta} \operatorname{hod} \operatorname{PCl}$
os'? '3333.3E,_g1"'.LJ' a, 1,. 1. 26J-'3Cr6 79t:,d 57
$104 \frac{S J-0}{}\left(1-6, \frac{1}{1}\right.$

MODULE IV

PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS

- Rectilinear Translation:

In statics, itwas considered that the rigid bodies are at
rest. In dynamics, it's considered that they ane in motion, Dynamics is commonly divided into two branches. Kinematics and lenetice.

Ln, kinematics weareconcerned with space time relationship of a siven motion of abody and not at all with the forces that cousethe motion,

- Rn kinetice weareconcerned with finding the kind of notion that asiven body or system of bedies will hare under the
action of siren forces or with what force must be applied
to produce a decried motion.

Displacement

$$
\text { From the fir, displacement of a partite } x \longrightarrow
$$

measured from the fixed reference

$$
\text { point } 0 \text {. }
$$

- When the particle is ta the right of fixed point 0 , this displacement can be considered poccitive and when it is towards the lefthand side it is considered al negative,
General displacement time equation?
for example

$$
\begin{aligned}
& x=f(t) \quad-" 1) \\
& t)=\text { function of time }
\end{aligned}
$$

In the above equation C, represents the initial displowment $a t t=0$, while the constant b shove the rate at which displacement increases. It is called uniform rectilinear motion.
sorond erample is
" $1 \mathrm{~h}, \mathrm{fL}$ " $<$.
sz... ,.J

7

1 e
,_d..')?:-o-r
10 t-,'t, w)
$r-r-r_{\mathrm{r}} 1: X \ldots, \mathrm{~d}_{\mathrm{d}}$,

$$
\begin{aligned}
& \text { J!!f.r. U. e } f-\text { c) tJ.f!! e г., ,fflon|2... a } \\
& t>\{\quad \propto Z-, 0 . \mathrm{nr},
\end{aligned}
$$

$$
\begin{array}{r}
V^{1} / 4 f_{1} r \text { ri_olQ_ } \\
\frac{d x}{d t}=-v_{0}+a t \quad-\quad
\end{array}
$$

substitin $¥$-al \quad "; $\quad a \quad c /$ Q $i, ; \quad \cdots-$ off a ' ,
$x=750500$

A bullot leaveethe nuxxie ofogun with relocity $v=750 \mathrm{~m} / \mathrm{s}$. Accuming constent accoleration fom breech to muxale find time t occuppred bythe bullet in travelling through gen barre/ which is 750 mm lang.
initial velocity of bellet $u+0$ final veliedty of ballet $V=750 \mathrm{~m} / \mathrm{L}$, total distanke $c=0.75 \mathrm{~m}$.

$$
t=2
$$

Wehare $v^{2}-u^{2}=2 a 0$,

$$
\begin{aligned}
\Rightarrow v^{2} & =2 a s \Rightarrow a=\frac{v^{2}}{2 s}=\frac{750^{2}}{2 \times 0.75} \\
& =375000 \mathrm{~m} / \sec ^{2}
\end{aligned}
$$

Aoain $\quad V=b+a t$

$$
\begin{aligned}
& \Rightarrow 750=375000 \times+ \\
& \Rightarrow t=\frac{750}{37500}=0.002 \sec
\end{aligned}
$$

-2 A stane is dropped into well and folls vertieally With constant accoloration $S=9.5 / \mathrm{m} / \mathrm{sec}^{2}$ The soen of of simpact of btane inthe bethbmof woll is heated ofter 6.5 Lee. If rolocity of soukdi's $336 \mathrm{~m} / \mathrm{s}$. Row deep is the ooell.?

$$
V=336 \mathrm{~m} / \mathrm{sec}
$$

1.ats = depth of well
$A_{1}=$ Hme token bythestone intathe well
$t_{2}=$ time taken by the sound tobe heared. total time $t=(t+1 t 2)=6.5$ see.
Now $S=\quad$ et $+\frac{1}{2} s+2$

$$
\begin{aligned}
& \Rightarrow s=0+\frac{1}{2} s t^{2} \\
& \Rightarrow h=\sqrt{\frac{2 s}{s}}
\end{aligned}
$$

When the sound travels with uniform veloerty
screvir

$$
\begin{aligned}
& \sqrt{\frac{2 s}{Q}+\frac{3}{V}}=8.5 \\
& \Rightarrow \quad \frac{2 s}{8}=16.5-\frac{S}{336} \\
& \begin{aligned}
\Rightarrow 2 s & =9.81\left(6.5-\frac{5}{336}\right)^{2} \\
& =9.81\left(\frac{2184-5}{336}\right)^{2} \\
& =0.0291(2184-5)^{2}
\end{aligned} \\
& =0.0291\left(4769856+s^{2}-43685\right) \\
& =138802.809+0.029152-127.1 \text { 1588s } \\
& \Rightarrow \quad 0.0291 \mathrm{~s}^{2}-129.10858+138802 \cdot 809=0 \\
& \Rightarrow s= \\
& 0.2038 \mathrm{~s}=42.25+0.000008855^{2}-0.0386 \mathrm{~s} \\
& 0.00000885 c^{2}-0.1658 \leqslant+42.2510 \\
& b=17.31 \mathrm{~m} \text {, }
\end{aligned}
$$

A2
A rope $A B$ is attached at B to a small brekoy nestipistedimpasions and poeseoverer a pellecy C sothat itis free end thanes 1.5 m dbore Qround when the block rests anthe floor. The end it of the rope is moved houlzontolly in astrline by a man walking with a uniffom Nelocity vo $=3 \mathrm{~m} / \mathrm{s}$. plottie veloutty-time diayram (b) find the time t requireal for the breck to reach the pelley if $h=4.5 \mathrm{~m}$, pully dithen sid. are neglibste.

A3 Apartive starts firm nest and maveo alenp a steline with constent acceleration a. If, th aequiree a velveity, $\quad=3 \mathrm{~m} / \mathrm{s}$. of ter harning travelled a distance $s=7.5 \mathrm{~m}$. find masnitude

Principles of Dynamics.

Newton's law of motion!

first law: Everybody continues in its state of rest or of uniform motion in astraisht line rept insofar as it may be compelled by force to change that state. bend Low !-

The acceleration of asiven particle is pinpertional the the force applied to it and takes place in the direction of thestraight line in which the force outs.
Third law To every action there is aldaye an equal and contrary reaction or the mutual actions of any two bodies are lalways equal and oppositely directed. General Equation of Motion of Particle:

$m a=f$

Differential equation of Rretilinear motion:Differential form of equation for rectilinear motion can be expressed as

$$
\frac{w}{s} \ddot{x}=x
$$

where $\ddot{x}=$ acceleration

$$
x=\text { Resultant acting fore. }
$$

Example

speed of rotation $n=120$ ppm, Determine the masnitude ofreseltant force actions in piston (a) at eaterme position and at the middle position
\square
, ')
')
..... $\cdot \mid$ f 2 SSJ V.A flt, ';
/"L-.....r oos It

$$
=[c \text {,) }
$$

$$
t_{., 1,} \cup_{2 .} \frac{2 \pi n}{60} \quad \frac{2 \pi \times 120}{60}=4 \pi \mathrm{rad} / \mathrm{s}
$$

$$
\dot{x}=-r \omega \sin \omega t
$$

$$
\left.\ddot{x}=-r \omega^{2} \cos \omega t-c 2\right)
$$

Differential equation ox motion

$$
\begin{array}{ll}
& \frac{|a|}{s} \ddot{x}=x \\
\Rightarrow \quad & \quad-\frac{w}{9} r^{2} \cos \omega t=X \\
\Rightarrow \quad x= & x-\frac{450}{9.81} \times 0.25(4 \pi)^{2} \cos (4 \pi t)
\end{array}
$$

for ectreme positirn

$$
\begin{aligned}
& \cos \omega+=-1 \\
& \Omega=x=1810 \mathrm{~N} .
\end{aligned}
$$

For premiddle position as rit $=0$.
so tesultant forw2

E-2
If- tL/lr:

\qquad

1) si Q most h" 1 tt on f-ita
, k h-o , $\langle J t, ; r y$

$J^{\prime \prime}$
t., derin lis case /2'") b--d,/)

$$
\begin{aligned}
& \underline{f,} \cdot) \in f, \quad i-) \\
& \frac{Q}{5} \cdot a=N+w-1=2 w+Q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{w a}{9}=(w-p)}{}=(w) \\
& \frac{(w-Q) a}{s}=P_{-}(w-Q) \\
& \frac{W_{\alpha}+(w-Q)}{\varphi}=W-\not p+\not p-(Q 1-R)=Q \\
& \Rightarrow \quad \frac{w_{a+}+W_{a}-R_{a}}{9}=R \\
& \Rightarrow \quad 2 w_{a}=Q \rho+Q a \\
& \Rightarrow Q=\frac{2 d a}{(5+a)}
\end{aligned}
$$

1. 1

A $W^{t}-W=4450 \mathrm{~N}$ is supported in a vertical plane by string and pulleys arranged sharinin tic. If the foe end A of th the string is pulled vertically drwi.burd with constant acceleration $a=1 \mathrm{sm} / \mathrm{s}^{2}$ find tension s in the string.
Differential equation of motion for the system is

$$
\begin{aligned}
2 s-w & =\frac{w}{s} \times \frac{a}{2} \\
\Rightarrow 2 s & =w+\frac{w a}{2 s} \\
& =\frac{w}{2}\left(2+\frac{a}{25}\right) \\
& =w\left(1+\frac{a}{29}\right) \\
\Rightarrow s & =\frac{1 w}{2}\left(1+\frac{a}{29}\right) \\
& =\frac{4450}{2}\left(1+\frac{18}{2 \times 9.81}\right)=4266.28 \mathrm{~N} .
\end{aligned}
$$

\therefore

$$
-
$$

$$
\underline{(w-Q) a}=P-(w-Q)
$$

$$
\begin{aligned}
& \text { ј;-, } \left.\quad t_{t>-/} P^{\prime!}!,-_; h^{\prime} \cdot 1\right)^{\prime \prime \prime \prime}{ }_{0} H \text {., } \\
& \mathbb{L}_{-t----1} \underbrace{}_{J e^{\prime}-1} \text { L, } \\
& 2 s-W=\frac{W}{s} \times \frac{a}{2} \\
& \Rightarrow \quad 2 s=\quad J, \ldots j t-{ }_{2 . \$} a
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow B=\left(1+\frac{a}{29}\right)
\end{aligned}
$$

Q. 2 An elerintor of cross it $W=4450 \mathrm{~N}$ starts to mrVR. uppord direction with a constant aceleration and aequites avelocity $\theta=15 \mathrm{~m} / \mathrm{s}$; after traveling a olistance $=1.80 \mathrm{~m}$. find tensils force s in the cable during it's motion. $V=$ istap. \square

1 4,f9\}-N.

$$
x \equiv 1.8 \mathrm{~m}
$$

$$
\mathrm{V}: \quad 1 \mathrm{t}-\mathrm{r} . / \mathrm{J} .
$$

$$
t^{\prime \prime \prime} j f,{ }^{\prime \prime} o-\quad v Q .-1 \quad+>\left(u_{-} \quad C 7\right.
$$

$$
\text { 9-!rs U2..- } \quad r J-r--l l r 2,, 9
$$

ix.

$1 \mathrm{~N}=4450 \mathrm{~N}$.

$$
\Rightarrow s-w+\frac{w}{s} a=
$$,Ј у / '5 I .,__f;

$$
, v:>_u Q .:-2-a
$$

$$
{ }^{2-} \quad 101 \text { '5r }\left(r t \underset{9, b,}{o} \quad-\quad l^{\prime} 15:: 17_{-} ; ;{ }^{\circ} \overline{N_{s}}\right.
$$

$A-y$
0.3

$$
\begin{aligned}
& B-F=\frac{W}{Q} \cdot a \\
& \left.\Rightarrow S=0.005 W+\frac{W 1 a}{3}-+1\right)
\end{aligned}
$$

fromeq. of tinem atice.

$$
\begin{aligned}
& v=u+a t \\
& \Rightarrow a \\
& \Rightarrow\left(\frac{15.56-0}{60}\right)=0.26 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

subetitretins the value of a in Req. C,

$$
\begin{aligned}
S & \left.=10.005+\frac{a}{9}\right] \\
& =1570\left(0.005+\frac{6.26}{9.87}\right)=5.0 \mathrm{kN.}
\end{aligned}
$$

Q. 4 A M. A is attached to the ond of asmall flemible rope of dia. $d=6.25 \mathrm{~mm}$. and is reised vortically by winding the rope on a reel. If the reol is tur oflal uniformiy atarate oy 2 rpc. what illl be the tension in rrpe
dia of nope d $=6.25 \mathrm{~mm}=0.00625 \mathrm{~m}$. Noo tevoletions $N=2$ rps.
let $x=$ initialradiues oर reol. $f=$ time taken for M revolutions. Netradive after tsee.

$$
R=[x+(N+d)]
$$

Now maan veloetty $N=X \omega$

$$
\omega=2 \pi N .
$$

$$
\therefore \quad V=(x+N+d) \quad 2 \pi ् \pi N
$$

aceeleration sope $a=\frac{d v}{d t}$

$$
a=\frac{d}{d t}\left[2 \pi N_{|a|}\left[2 \pi+2 \pi N^{2}+d\right]=2 \pi N^{2} d\right.
$$

 .-f,--o-l,"c, ll J ..., ci, w, '...... $t<$ " , "Od f-l-e Je,; lo brl'_Q__Ir') ,f+,,p-c p^{\prime} b/\{2

$\mid \ldots . . ., r_{f,--a l} \quad Q+e-u^{\prime} \quad$ u 0.
 fJr Frrin._ t- Ir! .e_c.

3 ——是一
$\uparrow \quad$ u $\quad \pm \begin{aligned} & \text { J-r,2.-- }\end{aligned}$

$$
a=30 \mathrm{~m}
$$

1,,/-J. ! :! _ I l:f
") $s=$ \qquad a,

Differential equation of motion (rectilinear y can be written as

$$
x-m \ddot{x}=0 \quad(1)
$$

Where $x=$ Resultant of all applied force in the direction of motion

$$
m=\text { mass of the particle }
$$

The above equation may be treated as equation of dynamic equilibrieen. To eaprese this equation, in addition to the real force acting on the particle a fictitioce force $m i n$ is required tole considered. This force is equal to the pirduett of mask of the particle andit's acceleration and directed inpposit direction, and is called the inertia force of the particle.

$$
-\sum m \ddot{x}=-\ddot{x} \sum m=-\frac{W}{3} \ddot{x}
$$

Where w. total weight of the body
so the equation of dynamic equilibrium can be eapressed as:

$$
\sum x_{i}+\left(-\frac{w}{9} \dot{x}\right)=0
$$

Example 1

For the example shown considering the motion of pulley as shown by the arrow mock. where upward acceleration \hat{x}_{2} for N_{2} and downward acceleration \dot{x}_{1} for w_{1},

- corresponding inertia forces and their direction are indicated by dotted line.
- By adding inertia forces to the real forces (such as W_{1}, W_{2} and tension in stings) we obtain, for each particle, a system of
forces in equilibrium.
The equilibrium equation for the entire eyetem with ret S

$$
\begin{aligned}
w_{2}+m_{2} \ddot{x} & =w_{1}-m_{1} \ddot{x} \\
\Rightarrow \quad\left(m_{1}+m_{2}\right) \ddot{x} & =\left(w_{1}-w_{2}\right) \rightarrow \ddot{x}=\frac{w_{1} w_{2}}{\left(w_{1}+w_{2}\right)}
\end{aligned}
$$

Example
$a r 7^{\circ} . U$

sion 5 inthestrin
motion of the system ye beth the inclinsd plane

bl
When W, moves downward' in the inclined plane with an ex

$$
\begin{aligned}
& \text { 11., J, - " } 5 .-\quad{ }^{\prime \prime}=0 / \ldots \text { _ } 1, \quad .: 0 \\
& 7 \quad i \quad\llcorner q \quad r-1, \backslash, .5 .-\quad-\quad \$ \\
& =W_{1} \sin 45-\mu W_{1} \cos 45^{\circ}-s \\
& \Rightarrow a=\left(900 \times \frac{1}{\sqrt{2}}-0.2 \times 900 \times \frac{1}{\sqrt{2}}-s\right) \frac{9.81}{900} \\
& =\left(\begin{array}{c}
636.4-127.28-s) 0.0109 \\
693676-1.387352 .
\end{array}\right. \\
& \Rightarrow a=\frac{693676-1.3873520}{549}-0.0109 \mathrm{c}
\end{aligned}
$$

Similarly for wright H_{2}

$$
\begin{aligned}
& 2 s-w_{2}-\frac{w_{2}}{9} \frac{a}{2}=0 \\
& \frac{w_{2} a}{2 s}=w_{2}\left(1+\frac{9}{29}\right)=25 \\
& \Rightarrow 2 s=\frac{450}{2}\left(1+\frac{9}{19.62}\right)=225+11.46 .8 a \\
&\text { toting the value } \left.\quad \text { st } s \text { in eq. } c_{1}\right)
\end{aligned}
$$

substituting the value ot s in eq. Cl^{\prime})

$$
\begin{aligned}
a & =693676-1.387352-0.009(225+11.46 a \\
& =6.93 .549408-2.4525-0.1249149 \\
& =3.096908-0.1249149 \\
\Rightarrow a & =2.75 \mathrm{~m} / \mathrm{s} 2
\end{aligned}
$$

Q. 2 Two weights P and Q are connected bythe arrangement shown in fig. Neglecting friction and inertia of puled and cord find the acceleration a of wt- Q Assume $P=178 \mathrm{~N}, Q=133.5 \mathrm{~N}$.

Applying D 'Alembert's principle fo. Q

$$
\begin{aligned}
& Q-S-\frac{Q}{s} a=0 \\
& \left.\Rightarrow S=Q\left(1-\frac{a}{s}\right)-c 1\right) \\
& =133.5\left(1-\frac{a}{9.5}\right)^{9}
\end{aligned}
$$

$$
\begin{aligned}
& S=133 \cdot 5\left(1-\frac{9}{9 \cdot-4}\right)^{9} \\
& =1 \text { pints principle to } P
\end{aligned}
$$

Applying b'Alemberts principle to

$$
\begin{aligned}
& 2 s-p-\frac{P a}{2 p}=0 \\
& \Rightarrow 2 s=p\left(1+\frac{a}{29}\right) \\
& \Rightarrow s\left.=\frac{p}{2}\left(1+\frac{a}{2 \rho}\right)-c_{2}\right) \\
&=\frac{178}{2}\left(1+\frac{a}{1 a}\right)
\end{aligned}
$$

$$
=\frac{178}{2}\left(1+\frac{9}{19.62}\right)
$$

$$
\begin{aligned}
& 133.5\left(1-\frac{9}{9.81}\right)=89\left(1+\frac{9}{19.62}\right) \\
& \Rightarrow 133.5-13.6089=89+4.5369 \\
& \Rightarrow 18.144 a=44.5 \\
& \Rightarrow a-2.45 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

03 Assuming the car in the figs to hake velocity of ${ }^{6}$ vols findshorfest distance s in which stopped with constant declaration

$$
\mu=0.5
$$

$\stackrel{43}{ }$

1
 1,1:. D-2.. q iu,'
$-F t^{\prime \prime \prime}-/ s$.
u """' $\quad / a \cdot l$ ""'l ...,.... ,, J:.. iu""""' 1.,'6. W W_{1} ti',-..ry af'ry,-s $D^{\prime}+-12 .{ }^{\prime \prime \prime \prime} \mathrm{r}$, ,. ,.s. $r^{\prime \prime \prime \prime \prime} t_{r L}^{\prime}$

$$
\begin{aligned}
& 2 s-w_{2}-\frac{w_{2}}{s} \frac{a}{2}=0 \\
& \Rightarrow 2 s=w_{2}\left(1+\frac{a}{2 s}\right.
\end{aligned}
$$

$$
\Rightarrow s=\frac{w_{2}}{2}\left(1+\frac{a}{2}\right)=\frac{445}{2}\left(1+\frac{a}{19.62}+2222.5+11.349\right.
$$

$$
\begin{aligned}
& \text { - ;-32. } / 5 \text { •9--"s - 0,7.2.9 }
\end{aligned}
$$

$$
\begin{aligned}
& 503.455-90.72 a=222.5+11.34 a \\
& \Rightarrow 102.0604 a=280.955 \\
& \Rightarrow a=2.75 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { so } s=222.5+11.34 \times 2.75 \\
& =253.71 \mathrm{~N}
\end{aligned}
$$

0.4

$$
\begin{aligned}
& W_{A}=44.5 \mathrm{~N} W_{1 B} \\
&=89 \mathrm{~N} \\
& \alpha=30^{\circ} \quad \mu_{a}=0.15 \\
& \mu_{B}=0.3
\end{aligned}
$$

Find prosure P bet blreks.

$$
\begin{aligned}
& W_{a} \sin 30-P-r_{0} R_{a}-\frac{W_{a} a}{3} a=0 \\
& \Rightarrow P=W_{a} \sin 30-\mu_{a} R_{a}-\frac{W_{a} a}{3} a 00 \\
&=44.5 \times \frac{1}{2}-0.15 \times 44.5 \times \cos 30 \\
&-\frac{44.5}{9.81} a a \\
&=22.25-5.78-4.53 a-\infty) \\
&=16.47-4.53 a-c) \\
& P+W_{b} \sin 30-\mu_{5} R_{b}-\frac{W_{b} a}{3}=0 \\
& \Rightarrow P=-\frac{W_{b}}{2}+6.3 \times 89 \cos 30+\frac{89}{9.81} a \\
&=-\frac{89}{2}+23.122+9.07 a \\
&=-21.378+9.07 a
\end{aligned}
$$

$$
\begin{aligned}
& 16.47-4.53 a=-21.378+9.079 \\
& \Rightarrow 13.6 a=37.848 \\
& \Rightarrow a=2.78 \mathrm{~m} / \mathrm{s}^{2} \\
& P=3.87 \mathrm{~N} .
\end{aligned}
$$

We have the differential equation of rectilinear motion of a particle

$$
\frac{W}{\rho} \ddot{x}=X
$$

Above equation may be written as

$$
\frac{w}{s} \frac{d \dot{x}}{d t}=x
$$

$$
\text { or } \left.\quad d\left(\frac{w}{9} \dot{x}\right)=x d t-c 1\right)
$$

In the above equation we Dill assume farce x as a function? of time represented by a force time diagrain.
The rishthand side of epee)
is then represented by the area of shaded elemental strip of $h+y$ and width at. This quantity ie
($x d t$) is called impulse of the force
x in time dit. The expression on the left hand side of the expressing $\left(\frac{W}{3} x^{\prime}\right)$ is called momentum of particle.
so the eq. ('), 'epresents the differential change in momentum of a pootivie in time dit. [ategrating eq. el) we have.

$$
\frac{w}{s} \dot{x}+c=\int_{0}^{t} x d t-(2)
$$

where C is a constant X integration
Now assuming an instal moment, $A=0$, the particle has an initial velocity i_{0}
so

$$
C=-\frac{\psi}{\rho} \dot{x}_{0}\left(-c_{3}\right)
$$

So equeotion (2) be comes
$\frac{W}{S} \dot{x}-\frac{W}{s} \dot{x}_{0}=\int_{0}^{t} x d t$
momentum of a particle during a finite inter $v a l, a t \rightarrow$. is equal to the impulse of acting force.
in other words

$$
f \cdot d t=d C \operatorname{m} v
$$

where $m \times v=$ momentum

Q-1 A man of $\omega+712 \mathrm{~N}$ stands in a brat rot that he is 4.5 m from a pier on the shore. He walks 2.4 m in the boat towards the pier and then stops. How for from the pier with he be at the end of time. wt. of boat is 890 N.
$\omega \alpha$ of man $|a|=712 \mathrm{~N}$
$w^{t} \rightarrow 0$ boat $w_{2}=890 N$

Let v_{0} is the initial velreity Atman and fistime
then

$$
\begin{aligned}
v_{0} t & =x \\
\Rightarrow \quad v_{0} t & =2.4 / \mathrm{m} \\
\Rightarrow \quad v_{0} & =\left(\frac{2.4}{t}\right) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

let $v=$ velocity σ boat towards right
according to conservation of momentum

$$
\begin{aligned}
w_{1} v_{0}=\left(w_{1}+w_{2}\right) v \\
\Rightarrow v=\frac{w_{1}, v_{0}}{\left(w_{1}+w_{2}\right)}
\end{aligned}
$$

distance worared by y boat

$$
\begin{aligned}
& s=v \cdot t=\frac{w_{1} v_{0}}{\left(w_{1}+w_{2}\right)} \cdot+ \\
& \Rightarrow s=\frac{712 \times 2.4}{f(712+890)} \cdot \forall 1.067 \mathrm{~m}
\end{aligned}
$$

V :

$$
\frac{31 \ldots X}{\underline{l_{\ldots} \cdot 21-, .} \times}
$$

$$
=3.82 \mathrm{~m} / \mathrm{s}
$$

0.3

L,g-- tS-f f--'-i wh,'c. h 7 li!
ser

$I, 1$ D | . 1.

/;L,ua re>f;" 9 "HJ u, ') o.Ae., va ,-f,'•.., ', '[J rr, •...,,"' r r-,f,r, "')

$$
\begin{aligned}
& \text { "i-2 ", (w, f 1-1 Y } \\
& \begin{array}{lc}
\text { VJ.. } & \begin{array}{ll}
\text { f. } & \text { e } \left.)<I, b^{\prime}\right) \\
& (!1 \bullet \ldots, \text { n } 3 \cdot 7: J
\end{array} ~
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { position of man }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Ans). }
\end{aligned}
$$

.4 A wrodslack wt 22.25 M rasts on a shrioth horiz.atol surface. A-rerolver ballat weiphing 0.14 A is shot korizantolly into the side of blekt. If the blouk attains onelvity of $3 \mathrm{~m} / \mathrm{s}$ whatis ruzzle veloeity.
W.i. of wrodblock $\quad b_{1}=22.25 \mathrm{~N}$.
$w+. \sigma /$ bollet $W_{2}=0.14 \times N$.
$\begin{aligned} \text { veloeity of bock } V & =3 \mathrm{~m} / \mathrm{s} . \\ \text { velmeity } X \text { nuzzie } & =u\end{aligned}$ velimity ixnuzzie $=u$
According to conservation of mmentum

$$
\begin{aligned}
A_{1} v= & \left\lvert\,=\frac{\left(W_{2} u\right.}{} u=\left(+1 N_{2}\right) v\right. \\
\Rightarrow 6 & =\frac{(22.25+0.14) 3}{0.14} \\
& =479.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Conservation of monentem
When the swin of inpulses due to enternal torceiszero the momentom of thesyetem remain eonserved when $\sum_{0}^{t} x d t=0$

$$
\sum\left(\frac{w_{1}}{s}\right) x_{2}^{\prime}=\sum\left(\frac{b_{1}}{s}\right) i_{1}
$$

\because final nomenten $=$ initial nomentun.

Curvilinear
When \Leftrightarrow moving portille describes a werved pooh itissaidto Displacement

Consider aparticle Pin a plane on a warred pot.
To-define the particle we need twourordinat x and y
as the porticle moves, theseeoordin ate

Change with time and the displacement time equations are

$$
x=f_{1}(+)
$$

$$
\left.y=f_{2}(t) \quad-c_{1}\right)
$$

The motion of particle con also be expressed as

$$
y=f(x) \quad s=f(t)
$$

where $y=f(x)$ represents the equation of path of
ant $s=f_{1}(t)$ gives displacement s meascared along the path as a function of time.
velvety!:-
Considering an infinitesimal time difference from to $t+1 t$ during which the particle mover from p toy alone it's path.
then velvity of portivis may be eaproseed as

$$
\bar{v}_{a v}=\frac{A \bar{s}}{\Delta t}
$$

$$
(\operatorname{Vav})_{x}=\frac{\Delta \dot{x}}{\Delta t}
$$

$(\operatorname{Var})_{y}=\frac{A y}{A t}$
(aresage velocity along x and y coordinates

\{.c) ,-Q 119;) $a^{\prime \prime \prime \prime \prime}$ c/ to c:IA110 K o ')S I.JI-:
 rcs,l: "o. $+e$ \qquad
Acceleration :-
The ecceleration porticles maybe deseribed as

$$
\begin{aligned}
& y \\
& 0 \text { ós } \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& x=r \cos \omega+\quad y=r \sin \omega t . \\
& x+y^{2}=r^{2} \\
& \dot{x}=-r \omega \sin \omega t \quad j \quad r w \text { U:r.J.SJ } \not P \\
& \theta=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \\
& \ddot{x}=-r \omega^{2} \cos \omega t \quad \ddot{y}=-r \omega^{2} \sin \omega t \\
& a=\sqrt{\ddot{x}^{2}+\ddot{y}^{2}}
\end{aligned}
$$

D'Alembert's Principle in Ceetvilinear Motion
4eceleration durins cirular motion

$V_{A}=$ tangential valocity at A

$$
=V_{B}=V
$$

Now $\quad d v=v d \theta=v \frac{d s}{\gamma}=\frac{v}{\gamma} d s$

$$
\text { aceoleration }=\frac{d v}{d t}=\frac{v^{2}}{\gamma}
$$

So when a body moves with uniform volgity ve alone a cerned patb of nodiue r, it hasa radtal inworof acceleration of masnitude $\frac{U 2}{r}$
Appiying D'Alembert's principle toset equilibrium condition an e'nertia forcesy mashitude $\frac{W}{8}$ a $=\frac{W}{s} \frac{u^{2}}{r}$ must be applied in quituard directi?? it is known as centrifugal force.
Motion on a level, road

Consider a bady is moving rith leniform velocity on a curvilinear curve of radiac r. Le t the read is flat.
Lef $W=$ wt. of the bady
and inertia force is giveh by

$$
\frac{W}{v} a=\frac{W}{s} \frac{v^{2}}{r}
$$

$\frac{\text { Condition forskidding }}{\text { Lal- } 1,\} \quad \text { iv. } 1 \text { t- } 1 \text { Ita t"c/Q }}$

$.1 J$. $\underline{i .9 e} \quad I_{, .,() r} \mathrm{fr}^{\prime} c$. ,..t.e....
 /j -al. $-H_{\text {,,,g }}$ vo Ju..JL \therefore......

$$
F=\mu \omega H
$$

Thenmarm permissible speed to ovad skidting

$$
\theta=\sqrt{\frac{\rho r}{2} \frac{B}{h}}
$$

 $b_{\text {r } 0>11}$
so
 aJ1

Desisned speed and ansle of Broking

$$
\begin{aligned}
& \text { z } T^{\prime \prime} \quad \text { KR... }-f r_{1-i, ., \text { efl })} \text { "' f-t-.. } Q_{-}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \tan \alpha=\frac{v^{2}}{\rho \gamma}
\end{aligned}
$$

e.lory-io.... b.-0.f- the angle of braking and designe of 3 peed - $-\frac{v^{2}}{Q^{\gamma}}$
condition for skidding and overturning.

$$
\begin{aligned}
& \tan \phi=f l .
\end{aligned}
$$

this Vo\} t.J...R.
(b) condition for overturning:
limiting speed for consideration of overturning

Meबनtadius $r=500 \mathrm{~mm}=0.5 \mathrm{~m}$.

$$
\begin{aligned}
& r t_{\text {,_ _ u }} \text { f-i,r,a./-e sf-rt2-_ Lf / '5. , >, m6.p\{i }
\end{aligned}
$$

$f,--i$
U! ą ..,-I' Cf
$5 h_{-}$
t .92

Le $f-$-p fe.'J c.; e-, tJ ,er / ".! 5
A - c,Hrt.-t!lJz_-e.-f-, 'I,..., (11' ,- JlJJ.- ry, "r, ,
-P $\quad q>J$
@f,

$$
1+, \ldots-{ }^{-\prime} \text { "I,,..., }, \cdot, \cdot, f
$$

Lt) t/ Df rr; Q,

$$
.-\quad \text { t.u;,,0 }+Y O \quad Q_{-}
$$

2... $w,+\quad A-?<^{\prime} r 24 B--$

Now centrifugal force

$$
\begin{aligned}
& \text { centrifuçal force } \\
& \frac{\omega}{s}(A d Q) \times \frac{\theta^{2}}{\gamma}=\frac{\omega}{9} \times A \neq 2 d \theta \times \frac{\theta^{2}}{\gamma}=\frac{2 \omega A d \theta^{2}}{S}
\end{aligned}
$$

Bolancins forcee alons the rodiue $=2 \phi \sin \theta$

$$
=\frac{2 \omega A d \theta u^{2}}{S}-c_{1}
$$

as $d \theta$ is very small $\sin d \theta \pm d \theta$
Eq. (1) may be writiten as

$$
\begin{aligned}
& 2 \phi d \theta=\frac{\$ \omega A d \theta \cdot v^{2}}{0} \\
& \Rightarrow \phi=\frac{\omega A \theta^{2}}{S}+c \\
& \text { Tensile strees an the rins } V_{t}=\frac{P}{A}=\frac{w V^{2}}{3}
\end{aligned}
$$

Now substiteting the values

$$
413.85 \times 10^{6}=\frac{77.12 \times 10^{3} \times 1 v^{2}}{9.81} \Rightarrow \quad \theta=229.45 \mathrm{~m} / \mathrm{s}
$$

Now $\quad \theta=\frac{\pi D N}{60} \Rightarrow N=\frac{60 \times 229.45}{\pi \times 1}=4382, \mathrm{rpm}$

D' Alembert's Principle in Curvilinear Motion
Equation of motion of a particle maybe written as

$$
\begin{aligned}
& x-m \ddot{x}=0 \\
& y-m \ddot{y}=0
\end{aligned} \quad\{\quad-c 1)
$$

Ohg. Find the proper super elevation 'e' for 07.2 m hisholay curve of radius $r=600 \mathrm{~m}$ in order that a Car travelling with aspeed of so kmph will have no tendency to skid sidenise.

$$
b=7.2 \mathrm{~m} \quad r=600 \mathrm{~m} \quad r=80 \mathrm{Kmph}=22.23 \mathrm{~m} / \mathrm{s} .
$$

Resolving along the inclined plane.

$$
\begin{aligned}
& w \sin \alpha=\frac{w}{s} \cdot \frac{v^{2}}{r^{2}} \cos \alpha \\
& \Rightarrow \tan \alpha=\frac{v^{2}}{r_{3}}
\end{aligned}
$$

from the geometry $\sin \alpha=\frac{e}{b}$, since α is verysinatl let $\sin \alpha \approx \tan \alpha$

$$
\begin{aligned}
\frac{v^{2}}{r_{B}}=\frac{l}{b} \Rightarrow R & =\frac{b v^{2}}{r_{B}}=\frac{7.2 \times 22.23^{2}}{600 \times 9.81} \\
& =0.604 \mathrm{~m} \text { (Ans) }
\end{aligned}
$$

$\begin{aligned} \text { VeJ ty } \theta & =3841 \mathrm{mph} \quad y \cdots 3 \\ & =106.67 \mathrm{~m} / \mathrm{s} .\end{aligned}$
ehare a". eof braking $\tan \alpha=\frac{u^{2}}{\gamma_{g}}$

$$
x a=+\infty \quad\left(\frac{106.67^{2}}{300 \times 9.87}\right)-\sqrt{75.5^{0}(\text { Ans })}
$$

Q. $4 \quad T_{w}$ bolls of ωt wia $=445 \mathrm{~N}$ and $\mathrm{h}_{\mathrm{s}}=66.75 \mathrm{~N}$ ank conneeted by an elastrc shring and supperted on a twomble ae shmon. When the tarintala is otrat, the tension in the tir string is $s=222.5 \mathrm{~N}$ and the bells ene.t th' d. 'filrl.Ron. each of the shops Aand B. What ,...VN-,,,INO evert on the stops when the te, ,., Jo,.bltw..., ri, ,... H"-9 leniformly about the vertical ars $C D$ at $60 \mathrm{rpm} ?$

$$
\begin{aligned}
& \mathrm{W} R--j i \quad ; \\
& 1, . . / 0-\cdot r r+Y^{\prime \prime 1} 1-1 \quad \mathrm{~W} ?,-
\end{aligned}
$$

S,
$\therefore-1$,Orpici,
 <rofe, M') $\mathrm{rr}_{11} \mathrm{rr-},$,-O 'd!:"'h")

19-2.
q -f" J...Jo. ? ?"/ Wei-

$R_{\text {. }}$ T $\underline{W l l}, \quad$?() ri. $\quad w^{\prime 2}$
b
3.J
gi ;" - rri,' 7- ; ;le'tl!, k' (!!..r,-/-

$$
-\frac{\mathbf{f}_{7}-\ldots \ldots}{111 \ldots} \mathbf{N} .
$$

Angular motion:-
The rate of chang oof angular displacement with time is called angular velocity and denoted by ω.

$$
\omega=\frac{d \theta}{d t} \quad-\quad(1)
$$

- The rate of chan se of angular velocity with time is called angular alederation and denote by α

$$
\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}-c_{2}
$$

Angular acceleration may a Iso be elppreesed as:

$$
\begin{aligned}
& \alpha=\frac{d \omega}{d t}=\frac{d \omega}{d \theta} \cdot \frac{d \theta}{d t} \\
& \Rightarrow \alpha=\omega \cdot \frac{d \omega}{d \theta}-(B)\left(i \frac{d \theta}{d t}=\omega\right)
\end{aligned}
$$

Relationship batwen angular motion and 1 invar motion

$$
\text { From first } s=r \theta
$$

tansentiol velocity (linear) of the particles.

$$
v=\frac{d s}{d t}=r \cdot \frac{d Q}{d t}(-14)
$$

liner acceleration $a_{t}=\frac{d u}{d t}=2 \frac{d^{2} Q}{d+2}$-(5)
If $\frac{v^{2}}{r}=$ radial acceleration
Then $a_{n}=\frac{v^{2}}{r}=r \omega^{2}-(6)$ (where $a_{n}=$ radial accolerat
uniform anger volos city (w)

$$
\omega=\frac{2 \pi N}{60}=\mathrm{rad} / \mathrm{sec} \quad-(7)
$$

when Amoval by 20 m , the angular displacement of pelling θ is given
by by

$$
\begin{aligned}
& \partial \theta=S \\
& O\left(2 \mathrm{rad} / \mathrm{s}^{2} \text { and } \mathrm{w}^{2} \text { ".. } r\right. \text {, }
\end{aligned}
$$

binematic elotio?

$$
C J .) \operatorname{otrj}_{1 .} u(2-
$$

$$
\prod 9--0=\underline{0} \quad \pm \underline{U_{J}} . J 2
$$

1,17-2 S-<:.. Q,
rs 4, ',.,., e._
ve. 'ry of $>$ b

$$
\begin{aligned}
&+\left\{J^{-1} \mid-\right. j ;>c \text { g } \ldots 91^{\prime} \\
&= \& \cdot j 11^{\prime} \\
&
\end{aligned}
$$

Ve f 11Y1J Istg
inematres of rigid be 2. $\frac{0^{\prime \prime \prime} ? s-,: I q .11 \dot{1}}{\left.\jmath^{\text {J } 8.7 r \&-f n}, \quad-\right]}$
 otetion:-
consider a wheel rotet,...
a, b-t>-u, $f-$ 1fr.. 1
'J. l......, e-loekwitc $A-J: d, ' 111$ CD " q_\&iedi lerafl i, I. R
 r from the aris of rio fotion, Ip bo the

$$
\begin{aligned}
& w_{\text {I,() }} \text { Tpt, } \\
& \text { c) } \underline{T} \underline{2 . .} \quad-47 \underline{2} \\
& \left.=1 \quad 1 \quad 1 \quad \underline{ } \quad-4 / S_{0}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { t'TI V JL } \\
& -f-i^{\prime \prime}-: 1 \text { a. } l . t o+1-,, J Z . \quad \text { v" } \int, 1 /+ \\
& \text { a. } \quad \text { ", }
\end{aligned}
$$

resulting force onthiselement

Rotational moment $\delta M_{t}=\delta p \times r$

$$
=\delta m r^{2} \alpha
$$

$$
\begin{aligned}
M_{t} & =\sum \delta M_{t}=\sum \delta m r^{2} \alpha \\
& =\alpha \sum \delta m r^{2} \\
& =\alpha \Sigma
\end{aligned}
$$

$$
\Rightarrow M_{+}=\alpha I
$$

($2=$ mass moment of inertia
Product $0 X$ mass moment 0 inertia and angular velleity of rotating body in celled angular momantedm

So Angular momentum $=I W$
kinetic eqersy of rotating bodies

$$
K \cdot E=\frac{1}{2} E w^{2}
$$

Q. 2

A flywheel weighing 50 kN and having radive of syration 1 m losses its speed for 400 rpm to $2 s 0$ rpm in 2 min . calculate
ca) retarding torque, Cb , change in $K E$ during the period, $C C$) change in angular momentum. we have $\omega_{0}=400 \mathrm{rpm}=\frac{2 \pi \times 400}{60}=41.89 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& w=280 \mathrm{rpm}=\frac{2 \pi \times 280}{60}=29.32 \mathrm{rad} / \mathrm{s} . \\
& t=2 \mathrm{~min}=120 \text { see }
\end{aligned}
$$

$\omega=\omega_{0}+\alpha+$

$$
\Rightarrow \alpha=\frac{\omega-\omega_{0}}{t}=\sqrt{-1047 \mathrm{rad} / \mathrm{s}^{2}}
$$

$$
\begin{aligned}
& \delta p=\delta m x \text { a (} a=\tan \text { sential acceleration } \\
& \text { bet } a=r \times \alpha \quad(\alpha=\text { angularacceleration } \\
& \therefore \delta p=\delta m+\alpha
\end{aligned}
$$

${ }_{-c}$ a．）IZ．ノ＠ere／．．．．， $1-\&-j$ vst＿

$$
\text { (b) } \begin{aligned}
0-n & s_{2} r_{n} \underline{k g} \\
& -I_{1}^{\prime}-\cdots, t H a /
\end{aligned} \quad-t^{\prime} r y a f \quad m-l
$$

$$
=\frac{1}{2} \times 5096.84\left(41.89^{2}-29.32^{2}\right)
$$

$$
=292042021115.462 \mathrm{Nm}
$$

Q． 3 A rylinder weighing 500 N is welded to a 1 m 10 g g uniform bor of 200 N ．botermine the acceleratio？ With which the assemby，will rotate about point Al if releoeed from reste in horizontal position． Deter mine the reactions at A at this instent． $200, \gamma$

Ft.

$$
\begin{aligned}
& (c) \mathrm{Q} ., \ldots, \mathrm{h} \mathrm{CV}) \mathrm{I}, \ldots-\operatorname{ar-i} \mathrm{g} \quad \mathrm{rO}, \ldots h r)\left(r t^{\prime \prime} ? r\right)+, . \mathrm{r}-\mathrm{S} \text {, } \\
& \text { o. } L w \\
& =5096.84(41.89-27.32) \\
& =64067.298 \mathrm{Nm} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { rvl } 51 r 1 \text { !n g-D o. J- } \\
& \text { _'s_ } 1:, 1 \text {,-1i-n' }
\end{aligned}
$$

$$
\begin{aligned}
& 4, \quad \mathrm{AJT} 7_{\text {tit }} 11 / 2 \mathrm{fJ} \text { 。 }
\end{aligned}
$$

Let α consular acceleration of the assembly 3 $L=$ moses moment o inertia of the aesemsy

$$
L=E E_{Q}+M d^{2}
$$

(transfer formula)
mors mi about $A=\frac{1}{2} \times \frac{200}{9.87} \times 1^{2}+\frac{200}{9.81} \times(0.5)^{2}$

$$
=6.7968
$$

moss ME of cylinder about 4

$$
\begin{aligned}
& =\frac{1}{2} \frac{500}{9.87} \times 0.2^{2}+\frac{500}{9.87} \times 1.2^{2} \\
& =74.4
\end{aligned}
$$

Mr of the system $=6.7968+74.4=81.2097$
Rotational moment a beet A

$$
\begin{aligned}
& \quad M_{A}=200 \times 0.5+500 \times 1.2=700 \mathrm{Nm} \\
& M_{A}=L \alpha \\
& \Rightarrow \quad \alpha=\frac{700}{81.2097}=\frac{8.6197 \mathrm{rad} / \mathrm{sec}}{1}
\end{aligned}
$$

Instantaneous acceleration of $\operatorname{rod} A B$ is

$$
\text { vertical and } \begin{aligned}
& =r, \alpha=0.5 \times 8.6197 \\
& =4.21
\end{aligned}
$$

$$
=4.31 \mathrm{~m} / \mathrm{s} .
$$

Similarly instantaneous aceoleration of cylinder

$$
\begin{aligned}
=r_{2} \alpha & =1.2 \times 8.6197 \\
& =10.34 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Applying DiAtembert's dynamic equilibrium

$$
\begin{align*}
& R_{A}=200+500-\frac{200}{9.87} \times 4.31-\frac{500}{9.81} \times 10.34 \\
& \Rightarrow R_{A}=84.93 \mathrm{M} . \quad \text { (Ans) } \tag{Ans}
\end{align*}
$$

MODULE V
 MECHANICAL VIBRATIONS

Definitions and Concepts

Amplitude :Maximum displacement from equilibrium position; the distance from the midpoint of a wave to its crest or trough.

Equilibrium position: The position about which an object in harmonic motion oscillates; the center of vibration.
Frequency: The number of vibrations per unit of time.
Hooke's law: Law that states that the restoring force applied by a spring is proportional to the displacement of the spring and opposite in direction.

Ideal spring: Any spring that obeys Hooke's law and does not dissipate energy within the spring.
Mechanical resonance: Condition in which natural oscillation frequency equals frequency of a driving force.
Period: The time for one complete cycle of oscillation.
Periodic motion: Motion that repeats itself at regular intervals of time.
Restoring force:The force acting on an oscillating object which is proportional to the displacement and always points toward the equilibrium position.

Simple harmonic motion: Regular, repeated, friction-free motion in which the restoring force has the mathematical form $\mathrm{F}=-\mathrm{kx}$.

Simple Harmonic Motion

A pendulum, a mass on a spring, and many other kinds of oscillators exhibit a special kind of oscillatory motion called Simple Harmonic Motion (SHM).

SHM occurs whenever :
i.
ere is a restoring force proportional to the displacement from equilibrium: $\mathrm{F} \propto-\mathrm{x}$
ii.
he potential energy is proportional to the square of the displacement: $\mathrm{PE} \propto \mathrm{x}^{2}$
iii.
he period T or frequency $f=1 / T$ is independent of the amplitude of the motion.
iv.
he position x, the velocity v, and the acceleration a are all sinusoidal in time.

(Sinusoidal means sine, cosine, or anything in between.)
As we will see, any one of these four properties guarantees the other three. If one of these 4 things is true, then the oscillator is a simple harmonic oscillator and all 4 things must be true.

Not every kind of oscillation is SHM. For instance, a perfectly elastic ball bouncing up and down on a floor: the ball's position (height) is oscillating up and down, but none of the 4 conditions above is satisfied, so this is not an example of SHM.

A mass on a spring is the simplest kind of Simple Harmonic Oscillator.

positions $\mathrm{x}=+\mathrm{A}$ and $\mathrm{x}=-\mathrm{A}$

Hooke's Law: $\mathbf{F}_{\text {spring }}=-\mathrm{k} \mathbf{x}$
$(-)$ sign because direction of $\mathbf{F}_{\text {spring }}$ is opposite to the direction of displacement vector \mathbf{x} (bold font indicates vector)
$\mathrm{k}=$ spring constant $=$ stiffness,
units $[k]=N / m$
Big $k=$ stiff spring

Definition: amplitude $\mathrm{A}=$
Mass oscillates between

extreme

Notice that Hooke's Law ($\mathrm{F}=-\mathrm{kx}$) is condition i : restoring force proportional to the displacement from equilibrium. We showed previously (Work and Energy Chapter) that for a spring obeying Hooke's Law, the potential energy is $\mathrm{U}=(1 / 2) \mathrm{kx}^{2}$, which is condition ii. Also, in the chapter on Conservation of Energy, we showed that $\mathrm{F}=-\mathrm{dU} / \mathrm{dx}$, from which it follows that condition ii implies condition i. Thus, Hooke's Law and quadratic $\mathrm{PE}\left(\mathrm{U} \propto \mathrm{x}^{2}\right)$ are equivalent.

We now show that Hooke's Law guarantees conditions iii (period independent of amplitude) and iv (sinusoidal motion).

We begin by deriving the differential equation for SHM. A differential equation is simply an equation containing a derivative. Since the motion is 1D, we can drop the vector arrows and use sign to indicate direction.
$\mathrm{F}_{\text {net }}=\mathrm{ma}$ and $\mathrm{F}_{\text {net }}=-\mathrm{kx} \Rightarrow \mathrm{ma}=-\mathrm{kx}$
$\mathrm{a}=\mathrm{dv} / \mathrm{dt}=\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2} \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\frac{\mathrm{k}}{\mathrm{m}} \mathrm{x}$
The constants k and m and both positive, so the k / m is always positive, always. For notational convenience, we write $\mathrm{k} / \mathrm{m}=\omega^{2}$. (The square on the ω reminds us that ω^{2} is always positive.) The differential equation becomes

$$
\frac{d^{2} x}{d_{t^{2}}}=-\omega^{2} x \quad \quad \text { (equation of } S H M \text {) }
$$

This is the differential equation for SHM. We seek a solution $x=x(t)$ to this equation, a function $x=x(t)$ whose second time derivative is the function $x(t)$ multiplied by a negative constant $\left(-\omega^{2}=-k / m\right)$. The way you solve differential equations is the same way you solve integrals: you guess the solution and then check that the solution works.

Based on observation, sinusoidal solution: $x(t)=A \cos (\omega t+\varphi)$,
where A, φ are any constants and (as we'll show) $\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$.
$\mathrm{A}=$ amplitude: x oscillates between +A and -A
$\varphi=$ phase constant (more on this later)
Danger: ω t and φ have units of radians (not degrees). So set your calculators to radians when using this formula.

Just as with circular motion, the angular frequency ω for SHM is related to the period by
$\omega=2 \pi \mathrm{f}=\frac{2 \pi}{\mathrm{~T}}, \mathrm{~T}=$ period.
(What does SHM have to do with circular motion? We'll see later.)

Let's check that $x(t)=A \cos (\omega t+\varphi)$ is a solution of the SHM equation.

Taking the first derivative $d x / d t$, we get $v(t)=\frac{d x}{d t}=-A \omega \sin (\omega t+\varphi)$.
Here, we've used the Chain Rule: $\overline{\mathrm{dt}}^{\mathrm{dt}} \cos (\omega \mathrm{t}+\varphi)=\frac{\mathrm{d} \cos (\theta)}{\mathrm{d} \theta} \frac{\mathrm{d} \theta}{\mathrm{dt}}, \quad(\theta=\omega \mathrm{t}+\varphi)$

$$
=-\sin \theta \cdot \omega=-\omega \sin (\omega t+\varphi)
$$

Taking a second derivative, we get
$\mathrm{a}(\mathrm{t})=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(-\mathrm{A} \omega \sin (\omega \mathrm{t}+\varphi))=-\mathrm{A} \omega^{2} \cos (\omega \mathrm{t}+\varphi)$
$\frac{d^{2} x}{d t^{2}}=-\omega^{2}[A \cos (\omega t+\varphi)]$
$\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\omega^{2} \mathrm{x}$

This is the SHM equation, with $\omega^{2}=\frac{\mathrm{k}}{\mathrm{m}}, \omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$

We have shown that our assumed solution is indeed a solution of the SHM equation. (I leave to the mathematicians to show that this solution is unique. Physicists seldom worry about that kind of thing, since we know that nature usually provides only one solution for physical systems, such as masses on springs.)

We have also shown condition iv: x, v, and a are all sinusoidal functions of time:
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}+\varphi)$
$\mathrm{v}(\mathrm{t})=-\mathrm{A} \omega \sin (\omega \mathrm{t}+\varphi)$
$a(t)=-A \omega^{2} \cos (\omega t+\varphi)$
The period T is given by $\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}=\frac{2 \pi}{\mathrm{~T}} \Rightarrow \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$. We see that T does not depend on the amplitude A (condition iii).

Let's first try to make sense of $\omega=\sqrt{\mathrm{k} / \mathrm{m}}$: big ω means small T which means rapid oscillations. According to the formula, we get a big ω when k is big and m is small. This makes sense: a big k (stiff spring) and a small mass m will indeed produce very rapid oscillations and a big ω.

A closer look atx $(\mathbf{t})=\mathbf{A} \cos (\boldsymbol{\omega} \mathbf{t}+\boldsymbol{\varphi})$

Let's review the sine and cosine functions and their relation to the unit circle. We often define the sine and cosine functions this way:
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\sin \theta=\frac{\text { opp }}{\text { hyp }}$

This way of defining sine and cosine is correct but incomplete. It is hard to see from this definition how to get the sine or cosine of an angle greater than 90°.

A more complete way of defining sine and cosine, a way that gives the value of the sine and cosine for any angle, is this: Draw a unit circle (a circle of radius $r=1$) centered on the origin of the $x-y$ axes as shown:

Define sine and cosine as
$\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{x}{1}=x$
$\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{y}{1}=y$
This way of defining sin and cos allows us to compute the sin or cos of any angle at all.

For instance, suppose the angle is $\theta=210^{\circ}$. like this:

The point on the unit circle is in the third and y are negative. So both $\cos \theta=x$ and

For any angle θ, even angles bigger than 360°

Then the diagram looks quadrant, where both x $\sin \theta=y$ are negative
(more than once around the circle), we can always compute sin and cos. When we plot \sin and \cos vs angle θ, we get functions that oscillate between +1 and -1 like so:

We will almost always measure angle θ in radians. Once around the circle is 2π radians, so sine and cosine functions are periodic and repeat every time θ increases by $2 \pi \mathrm{rad}$. The sine and cosine functions have exactly the same shape, except that \sin is shifted to the right compared to \cos by $\Delta \theta=\pi / 2$. Both these functions are called sinusoidal functions.

The function $\cos (\theta+\varphi)$ can be made to be anything in between $\cos (\theta)$ and $\sin (\theta)$ by adjusting the size of the phasep between 0 and -2π.
$\cos \theta,(\varphi=0) \rightarrow \sin \theta=\cos \left(\theta-\frac{\pi}{2}\right), \quad(\varphi=-\pi / 2)$
The function $\cos (\omega \mathrm{t}+\varphi)$ oscillates between +1 and -1 , so the function $\mathrm{A} \cos (\omega \mathrm{t}+\varphi)$ oscillates between +A and -A.

Why $\omega=\frac{2 \pi}{\mathrm{~T}}$? The function $\mathrm{f}(\theta)=\cos \theta$ is periodic with period $\Delta \theta=2 \pi$. Since $\theta=\omega t+\varphi$, and φ is some constant, we have $\Delta \theta=\omega \Delta \mathrm{t}$. One complete 2χ cle of the cosine function corresponds to $\Delta \theta=2 \pi$ and $\Delta t=\mathrm{T}$, (T is the period). So we have $2 \pi=\omega \mathrm{T}$ or $\omega=\frac{\mathrm{T}}{}$. Here is another way to see it: $\cos (\omega \mathrm{t})=\cos \mid 2 \pi$, is periodic
with period $\Delta \mathrm{t}=\mathrm{T}$. To see this, notice that when t increases by T , the fraction t / T increases by 1 and the fraction $2 \pi \mathrm{t} / \mathrm{T}$ increases by 2π.

Now back to simple harmonic motion. Instead of a circle of radius 1, we have a circle of radius A (where A is the amplitude of the Simple Harmonic Motion).

SHM and Conservation of Energy:

Recall $\mathrm{PE}_{\text {elastic }}=(1 / 2) \mathrm{k} \mathrm{x}^{2}=$ work done to compress or stretch a spring by distance x .
If there is no friction, then the total energy $\mathrm{E}_{\mathrm{tot}}=\mathrm{KE}+\mathrm{PE}=$ constant during oscillation. The value of $\mathrm{E}_{\text {tot }}$ depends on initial conditions - where the mass is and how fast it is moving initially. But once the mass is set in motion, $\mathrm{E}_{\mathrm{tot}}$ stays constant (assuming no dissipation.)

At any position x , speed v i\$ such that $\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{kx}{ }^{2}=\mathrm{E}_{\text {tot }}$
When $|x|=A$, then $v=0$, and all the energy is PE: $\underset{0}{\mathbb{K}}+\underset{(1 / 2) k A^{2}}{\mathrm{E}}=\mathrm{E}_{\text {tot }}$
So total energy $E_{\text {tot }}=\frac{1}{2} \mathrm{k} \mathrm{A}^{2}$

When $\mathrm{x}=0, \mathrm{v}=\mathrm{v}_{\max }$, and all the energy is KE: $\underset{(1 / 2) \mathrm{mv}_{\max }^{2}}{\mathbb{K}}+\underset{0}{\mathrm{~B}}=\mathrm{E}_{\text {tot }}$
So, total energy $E_{\text {tot }}=\frac{1}{2} \mathrm{mv}_{\max }{ }^{2}$.

So, we can relate $\mathrm{v}_{\max }$ to amplitude $\mathrm{A}: \mathrm{PE}_{\max }=\mathrm{KE}_{\max }=\mathrm{E}_{\text {tot }} \Rightarrow \frac{1}{2} \mathrm{kA}^{2}=\frac{1}{2} \mathrm{mv}{ }_{\max }^{2} \Rightarrow$
$v_{\max }=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \mathrm{A}$

Example Problem: A mass m on a spring with spring constant k is oscillating with amplitude A. Derive a general formula for the speed v of the mass when its position is x.
Answer: $\mathrm{v}(\mathrm{x})=\mathrm{A} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \sqrt{1-\left(\frac{\mathrm{x}}{\mathrm{A}}\right)^{2}}$

Be sure you understand these things:

Pendulum Motion

A simple pendulum consists of a small mass m suspended at the end of a massless string of length L. A pendulum executes SHM, ifthe amplitude is not too large.

$$
\theta=\mathrm{x} / \mathrm{L} \text { (rads) }
$$

Forces on mass :

The restoring force is the component of the force along the direction of motion:
restoring force $=-m g \sin \theta \cong-m g \theta=-m g \frac{x}{L}$
Claim: $\sin \theta \cong \theta$ (rads) when θ is small. $\sin \theta=\frac{\mathrm{h}}{\mathrm{L}}$

R
$\underset{\text { restore }}{\mathrm{F}}=-\binom{\mathrm{mg}}{\mathrm{L}} \mathrm{x}$ is exactly like Hooke's Law $\underset{\text { restore }}{\mathrm{F}}=-\mathrm{kx}$, except we have replaced the constant k with another constant (mg / L). The math is exactly the same as with a mass on a spring; all results are the same, except we replace k with (mg / L).

$$
\mathrm{T}_{\text {spring }}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow \mathrm{~T}_{\text {pend }}=2 \pi \sqrt{\frac{\mathrm{~m}}{(\mathrm{mg} / \mathrm{L})}}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}
$$

Notice that the period is independent of the amplitude; the period depends only on length L and acceleration of gravity. (But this is true only if θ is not too large.)

SHM and circular motion

There is an exact analogy between SHM and circular motion. Consider a particle moving with constant speed v around the rim of a circle of radius A.
The x-component of the position of the particle has exactly the same mathematical form as the motion of a mass on a spring executing SHM with amplitude A.

Angular velocity $\Rightarrow 0=\frac{d \theta}{d t}=$ const
$\theta=\omega \mathrm{t}$ so

This same formula also describes the sinusoidal motion of a mass on a spring.

That the same formula applies for two different situations (mass on a spring \& circular motion) is no accident. The two situations have the same solution because they both obey the same equation. As Feynman said, "The same equations have the same solutions". The equation of SHM is $\frac{d^{2} x}{d^{2}}=-\omega^{2} x$. We now show that a particle in circular motion obeys this same SHM equation.

Recall that for circular motion with angular speed ω, the acceleration of a the particle is toward the center and has magnitude $\left|a^{\square}\right|=\frac{\mathrm{v}^{2}}{\mathrm{R}}$. Since $\mathrm{v}=\omega \mathrm{R}$, we can rewrite this as $\left|{ }^{\square}\right|=\frac{(\omega \mathrm{R})^{2}}{\mathrm{R}}=\omega^{2} \mathrm{R}$

Let's set the origin at the position vector \mathbf{R} is that the acceleration direction opposite the $|\mathrm{a}|=\omega|\mathrm{R}|$, the related by $|R|$ component of this $a_{x}=-\frac{d^{2}}{d^{2}} R_{x}$. If we

the center of the circle so along the radius. Notice vector \mathbf{a} is always in the position vector \mathbf{R}. Since vectors \mathbf{a} and \mathbf{R} are
$\mathrm{a}=-\omega^{2} \mathrm{R}$. The $\mathrm{x}-$ vector equation is: write $\mathrm{R}_{\mathrm{x}}=\mathrm{x}$, then we which is the SHM equytion. $\mathrm{Do}=\mathrm{ne}^{-} \cdot \omega^{2} \mathrm{x}$, dt^{2}

Example

A mass of 0.5 kg oscillates on the end of a spring on a horizontal surface with negligible friction according to the equation $x=A \cos (\omega t)$. The graph of $F v s$. x for this motion is shown below.

The last data point corresponds to the maximum displacement of the mass.
Determine the
(a) angular frequency ω of the oscillation,
(b) frequencyf of oscillation,
(c) amplitude of oscillation,
(d) displacement from equilibrium position $(x=0)$ at a time of 2 s .

Solution:

(a) We know that the spring constant $k=50 \mathrm{~N} / \mathrm{m}$ from when we looked at this graph earlier. So,
$\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{50 \mathrm{~N} / \mathrm{m}}{0.5 \mathrm{~kg}}}=10 \frac{\mathrm{rad}}{\mathrm{s}}$
(b) $f=\frac{\omega}{\frac{\omega}{2 \pi}}=\frac{10 \mathrm{rad} / \mathrm{s}}{2 \pi}=1.6 \mathrm{~Hz}$
(c) The amplitude corresponds to the last displacement on the graph, $A=1.2 \mathrm{~m}$.
(d) $x=A \cos (\omega t)=(1.2 \mathrm{~m}) \cos [(10 \mathrm{rad} / \mathrm{s})(2 \mathrm{~s})]=0.5 \mathrm{~m}$

Example

A spring of constant $k=100 \mathrm{~N} / \mathrm{m}$ hangs at its natural length from a fixed stand. A mass of 3 kg is hung on the end of the spring, and slowly let down until the spring and mass hang at their new equilibrium position.

(a) Find the value of the quantity x in the figure above.The spring is now pulled down an additional distance x and released from rest.
(b) What is the potential energy in the spring at this distance?
(c) What is the speed of the mass as it passes the equilibrium position?
(d) How high above the point of release will the mass rise?
(e) What is the period of oscillation for the mass?

Solution:

(a) As it hangs in equilibrium, the upward spring force must be equal and opposite to the downward weight of the block.
$F_{s}=m g$
$k x=m g$
$x=\frac{m g}{k}=\frac{(3 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)}{100 \mathrm{~N} / \mathrm{m}}=0.3$

(b) The potential energy in the spring is related to the displacement from equilibrium position by the equation $U=\frac{1}{2} k x^{2}=\frac{1}{2}(100 \mathrm{~N} / \mathrm{m})(0.3 \mathrm{~m})^{2}=4.5 \mathrm{~J}$
(c) Since energy is conserved during the oscillation of the mass, the kinetic energy of the mass as it passes through the equilibrium position is equal to the potential energy at the amplitude. Thus,
$K=U=\frac{1}{2} m v^{2}$
$v=\sqrt{\frac{2 U}{m}}=\sqrt{\frac{2(4.5 \mathrm{~J})}{3 \mathrm{~kg}}}=1.7 \mathrm{~m} / \mathrm{s}$
(d) Since the amplitude of the oscillation is 0.3 m , it will rise to 0.3 m above the equilibrium position.
(e) $T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{3 k g}{100 N / m}}=1.1 \mathrm{~s}$

Example

A pendulum of mass 0.4 kg and length 0.6 m is pulled back and released from and angle of 10° to the vertical.
(a) What is the potential energy of the mass at the instant it is released. Choose potential energy to be zero at the bottom of the swing.
(b) What is the speed of the mass as it passes its lowest point?

This same pendulum is taken to another planet where its period is 1.0 second.
(c) What is the acceleration due to gravity on this planet?

Solution

(a) First we must find the height above the lowest point in the swing at the instant the pendulum is released.

Recall from chapter 1 of this study guide that $h=L-L \cos \vartheta$.
Then
$U=m g(L-L \cos \vartheta)$
$U=(0.4 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)\left(0.6 m-0.6 m \cos 10^{\circ}\right)=\mathrm{C} . \mathrm{h}$

(b) Conservation of energy:

$$
U_{\max }=K_{\max }=\frac{1}{2} m v^{2}
$$

$$
v=\sqrt{\frac{2 U}{m}}=\sqrt{\frac{2(0.4 J)}{0.4 \mathrm{~kg}}}=1.4 \mathrm{~m} / \mathrm{s}
$$

(c)

$$
T=2 \pi \sqrt{\frac{}{g}}
$$

$$
g=\frac{4 \pi^{2} L}{T^{2}}=\frac{4 \pi^{2}(0.6 \mathrm{~m})}{(1.0 \mathrm{~s})^{2}}=23.7 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

COMPOUND PENDULUM

AIM:

The aim of this experiment is to measure g using a compound pendulum.
YOU WILL NEED:

WHAT TO DO:

First put the knife edge through the hole in the metre rule nearest end A, and record the time for 10 oscillations. Hence work out the time for one oscillation (T).

Repeat this for each hole in the ruler for a series of different distances (d) from end A.

ANALYSIS AND CALCULATIONS:

Plot a graph of T against d .

From the graph record a series of values of the simple equivalent pendulum (L).

Calculate the value of g from the graph or from the formula:

$$
\mathrm{T}^{2}=4 \pi^{2} \mathrm{~L} / \mathrm{g}
$$

Torsion Pendulum:

1. Introduction

Torsion is a type of stress, which is easier to explain for a uniform wire or a rod when one end of the wire is fixed, and the other end is twisted about the axis of the wire by an external force. The external force causes deformation of the wire and appearance of counterforce in the material. If this end is released, the internal torsion force acts to restore the initial shape and size of the wire. This behavior is similar to the one of the released end of a linear spring with a mass attached.

Attaching a mass to the twisting end of the wire, one can produce a torsion pendulum with circular oscillation of the mass in the plane perpendicular to the axis of the wire.

To derive equations of rotational motion of the torsion pendulum, it would be useful to recall a resemblance of quantities in linear and rotational motion. We know that if initially a mass is motionless, its linear motion is caused by force F; correspondingly, if an extended body does not rotate initially, its rotation is caused by torque τ. The measure of inertia in linear motion is mass, m, while the measure of inertia in rotational motion is the moment of inertia about an axis of rotation, I. For linear and angular displacement in a one-dimensional problem, we use either x or θ. Thus, the two equations of motion are:

$$
\begin{equation*}
F_{x}=m a_{x} \text { and } \quad \tau=I \alpha \tag{1}
\end{equation*}
$$

where a_{x} and α are the linear and the angular acceleration.
If the linear motion is caused by elastic, or spring, force, the Hooke's law gives $F_{x}=-k x$, where k is the spring constant. If the rotation is caused by torsion, the Hooke's law must result in
$\tau=-\kappa \theta$
wherek is the torsion constant, or torsional stiffness, that depends on properties of the wire. It is essentially a measure of the amount of torque required to rotate the free end of the wire 1 radian.

Your answer to the Preparatory Question 2 gives the following relationship between the moment of inertia I of an oscillating object and the period of oscillation Tas:

This relationship is true for oscillation where damping is negligible and can be ignored. Otherwise the relationship between I and κ is given by

$$
\begin{equation*}
I=\frac{K}{\omega_{0}^{2}} \tag{*}
\end{equation*}
$$

where ω_{0} can be found from $\omega=\sqrt{\omega_{0}^{2}-\left(\frac{c}{2 I}\right)^{2}}$
$\omega=\frac{2 \pi}{T}=2 \pi f ; f$ is the frequency of damped oscillation; and c is the damping coefficient.
The relationship between the torsion constant κ and the diameter of the wired is given in [3] (check your answer to the Preparatory Question 1) as
$\kappa=\frac{\pi G d^{4}}{32 l}$
where l is the length of the wire and G is the shear modulus for the material of the wire.
As any mechanical motion, the torsional oscillation is damped by resistive force originating from excitation of thermal modes of oscillation of atoms inside the crystal lattice of the wire and air resistance to the motion of the oscillating object. We can estimate the torque of the resistive force as being directly proportional to the angular speed of the twisting wire, i.e. the torque $\tau_{R}=-c \mathrm{~d} \theta / \mathrm{d} t$ (recall the drag force on mass on spring in viscose medium as $R=-b v$). Combining Eq.(1), (2) and the expression for τ_{R}, we obtain the equation of motion of a torsional pendulum as follows:

$$
\begin{equation*}
I \frac{d^{2} \vartheta}{d t^{2}}+c \frac{d \vartheta}{d t}+\kappa \vartheta=0 \tag{5}
\end{equation*}
$$

The solution of Eq.(5) is similar to the solution of the equation for damped oscillation of a mass on spring and is given by:

$$
\begin{equation*}
\vartheta=A e^{-\alpha t} \cos (\omega t+\varphi) \tag{6}
\end{equation*}
$$

where $\alpha=c / 2 I$
and $\alpha=\beta^{-1}$ with β being the time constant of the damped oscillation; c is the damping coefficient; ω is the angular frequency of torsional oscillation measured in the experiment; and φ can be made zero by releasing the object on the wire at a position of the greatest deviation from equilibrium.

Equation (6) can be used to calculate c (damping coefficient) and B (time constant $=$ amount of time to decaye times) with DataStudio interface and software.

Another important formula is $\alpha=\omega_{0} / 2 Q$, where Q is the quality factor and $\omega_{0}{ }^{2}=\kappa / I$ (see Eq. ${ }^{\prime}$ '). The ratio $\zeta=\alpha / \omega_{0}=(2 \mathrm{Q})^{-1}$
is called the damping ratio.

Free vibration of One Degree of Freedom Systems

Free vibration of a system is vibration due to its own internal forces (free of external impressive forces). It is initiated by an initial deviation (an energy input) of the system from its static equilibrium position. Once the initial deviation (a displacement or a velocity or both) is suddenly withdrawn, the strain energy stored in the system forces the system to return to its original, static equilibrium configuration. Due to the inertia of the system, the system will not return to the equilibrium configuration in a straightforward way. Instead it will oscillate about this position - free vibration.

A system experiencing free vibration oscillates at one or more of its natural frequencies, which are properties of its mass and stiffness distribution. If there is no damping (an undamped system), the system vibrates at the (undamped) frequency (frequencies) forever. Otherwise, it vibrates at the (damped) frequency (frequencies) and dies out gradually. When damping is not large, as in most cases in engineering, undamped and damped frequencies are very close. Therefore usually no distinction is made between the two types of frequencies.

The number of natural frequencies of a system equals to the number of its degrees-of-freedom. Normally, the low frequencies are more important.

Damping always exists in materials. This damping is called material damping, which is always positive (dissipating energy). However, air flow, friction and others may 'present' negative damping.
Undamped Free Vibration

Equation of motion based on the free-body diagram

$$
\begin{aligned}
& m \dot{x}+k x=0 \\
& \dot{x}+\omega_{\mathrm{n}}^{2} x=0 \\
& \tau=\sqrt{\frac{k}{m}} \\
& \tau=2 \pi \sqrt{\frac{m}{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \tau=? \quad \omega_{\mathrm{n}}=? \\
& x(0)=? \quad x \cdot(0)=?
\end{aligned}
$$

$$
x(t)=\frac{x^{\circ}(0)}{\omega_{\mathrm{n}}} \sin \omega t+x(0) \cos \omega t
$$

$$
\left.=\sqrt{\left(\frac{x \cdot(0)}{\omega_{\mathrm{n}}}\right)^{2}+[x(0)]^{2}} \begin{array}{c}
\sin (\omega t+\varphi) \quad \varphi=\arctan \binom{x(0) \omega_{\underline{h}}}{x^{\cdot}(0)}
\end{array}\right)
$$

Vibration of a pendulum
How to establish the equation of motion?
What is its natural frequency?

Systems with Rotational Degrees-of-Freedom

Systems involving rotational degrees-of-freedom are always more difficult to deal with, in particular when translational degrees-of-freedom are also present. Gear care is needed to identify both degrees-of-freedom and construct suitable equations of motion.

Damped Free Vibration (first hurdle in studying vibration)

$m \dot{x}=-k x-c \dot{x} \quad \quad m \dot{x}+c \dot{x}+k$
standard equation $\quad \dot{x}+2 \underset{\sim}{2}\left(\dot{x}+\omega^{2} x=0\right.$
damping factor

$$
\zeta=\frac{c}{2 m \omega_{\mathrm{h}}}=\frac{c}{2 \sqrt{k m}}
$$

1.oscillatory motion (under-damped $\quad \zeta<$) 1

$$
\begin{aligned}
& x(t)=\exp (-\zeta \omega t)\left[C \underset{\mathrm{n}}{\exp }\left(\zeta^{2}-1 \omega t\right)+C \underset{\mathrm{n}}{\exp }\left(-\zeta^{2}-1 \omega t\right)\right]_{\mathrm{n}} \\
& x(t)=\exp \left(-\zeta \omega_{\mathrm{n}} t\right)\left(A \sin \omega_{\mathrm{d}} t+B \cos \operatorname{sit}^{t} t\right)=X \exp \left(-\zeta \omega_{\mathrm{n}} t\right) \sin \left(\omega_{\mathrm{d}} t+\varphi\right) \\
& x(t)=\underset{\mathrm{n}}{\exp (-\zeta \omega t)\left[\sum^{\dot{c}(0)+\omega_{\mathrm{n}}(0)} \sin \omega t+x(0) \cos \omega t\right]} \omega_{\mathrm{d}} \quad \underset{\mathrm{~d}}{\omega=\omega} \underset{\mathrm{d}}{\omega} \sqrt{1-\zeta^{2}}
\end{aligned}
$$

2.nonoscillatory motion (over-damped $\quad \zeta$) 1

$$
x(t)=\exp (-\zeta \omega t)\left[A \exp \left(\zeta^{2}-1 \omega t\right)+{\underset{n}{n}}^{\exp }\left(-\zeta^{2}-1 \omega t\right){ }_{\mathrm{n}}\right.
$$

3.critically damped motion () $\zeta=1$
$x(t)=(A+B t) \exp \left(-\omega_{\mathrm{n}} t\right)$

4. negative damping of $\zeta<0$ as a special case of $\zeta<1$:
$x(t)=\exp (-\zeta \omega t)\left[C \exp _{1}\left(\zeta^{2}-1 \omega t\right)+C \exp _{2}\left(-\zeta^{2}-1 \sqrt{\omega t}\right)\right] \quad$ n

Divergent oscillatory motion (flutter) due to negative damping

Determination of Damping
$x(t)=X \exp \left(-\zeta \omega_{\mathrm{n}} t\right) \sin \left(\omega_{\mathrm{d}} t+\varphi\right)$

$2 \exp (-0.05 \pi t) \sin (0.9988 \pi t+\varphi)$
two consecutive peaks:
$x_{1}=X \exp \left(-\zeta \omega_{\mathrm{n}} t_{1}\right) \sin \left(\omega_{\mathrm{d}} t_{1}+\varphi\right)$
$x_{2}=X \exp \left(-\zeta \omega_{\mathrm{n}} t_{2}\right) \sin \left(\omega_{\mathrm{y}} t_{2}+\varphi\right)=X \exp \left(-\zeta \omega_{\mathrm{n}} t_{2}\right) \sin \left(\omega_{\mathrm{t}} t_{1}+\varphi\right)$
logarithm decrement \Rightarrow

$$
\delta=\ln \frac{x_{1}}{x_{2}}=\zeta \pi_{\mathrm{nd}} \quad \zeta=\frac{\delta}{\omega \tau_{\mathrm{n} \mathrm{~d}}}
$$

Example:

The $2^{\text {nd }}$ and $4^{\text {th }}$ peaks of a damped free vibration measured are respectively 0.021 and 0.013 . What is damping factor?

Solution:

$$
\begin{aligned}
& \frac{x\left(t_{2}\right)}{x\left(t_{4}\right)}=\exp \left(\boldsymbol{\zeta}_{n} 2 \tau_{\mathrm{d}}\right) \quad \rightarrow \quad 2 \Pi_{n} \pi_{\mathrm{t}}=\ln \left(\frac{x\left(t_{2}\right)}{x\left(t_{4}\right)}\right) \\
& 2 \psi_{n} \pi_{\mathrm{d}} \quad=2 \zeta_{n} \quad \frac{2 \pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=\frac{4 \pi \zeta}{\sqrt{1-\zeta^{2}}}=\ln \left(\frac{x\left(t_{2}\right)}{x\left(t_{4}\right)}\right)
\end{aligned}
$$

If a small damping is assumed, $2 \boldsymbol{\mu}_{\pi} \boldsymbol{r}_{\mathrm{d}} \quad=4 \pi \zeta=\ln \left\lvert\,\left(\frac{x\left(t_{2}\right)}{\left(x\left(t_{4}\right)\right.}\right)\right.$. This leads to
$\zeta=\frac{1}{4 \pi} \ln \left(\frac{x\left(t_{2}\right)}{x\left(t_{4}\right)}\right)=0.0382=3.82 \%$.

If such an assumption is not made, then $\frac{\zeta}{\sqrt{1-\zeta^{2}}}=\frac{1}{4 \pi} \ln \left(\frac{x\left(t_{2}\right)}{x\left(t_{4}\right)}\right)$ and hence $\left.\frac{\zeta^{2}}{1-\zeta^{2}}=\left\lvert\, \frac{\lceil 1}{4 \pi} \ln \left(\frac{x\left(t_{2}\right)}{x\left(t_{4}\right)}\right)\right.\right]^{2}$. This leads to
$\zeta=\frac{\begin{array}{c}1 \\ 4 \pi \ln \left(\begin{array}{c}x\left(t_{2}\right) \\ x(t) \\ 4\end{array}\right)\end{array} \sqrt{1+\left[\frac{1}{4 \pi} \ln \binom{x\left(t_{\underline{2}}\right)}{x\left(t_{4}\right)}\right]^{2}}}{\sqrt{1+2}}=0.0381=3.81 \%$. So virtually the same value.
General differential equations

$$
a_{n} \frac{\mathrm{~d}^{n} x}{\mathrm{~d} t^{n}}+a_{n-1} \frac{\mathrm{~d}^{n-1} x}{\mathrm{~d} t^{n-1}}+\ldots . .+a_{1} \frac{\mathrm{~d} x}{\mathrm{~d} t^{1}}+a_{0}=0
$$

first solve the characteristic equation

$$
\underset{n}{a} \lambda+a \underset{n-1}{\lambda^{-1}}+\ldots \ldots+\underset{1}{a \lambda}+a=\underset{0}{=}
$$

If all roots λ_{j} aredistinct, then the general solution is

$$
x(t)=\sum_{j=1}^{n} b_{j} \exp \left(\lambda_{j} t\right)
$$

whereb $_{j}$ are constants to be determined.

If there are repeated roots, t^{m} (integer $m>1$) appears in a solution.
These are not interesting cases for mechanical vibration.
λ in response to the change of a parameter reveal stability properties

