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Preface 

The subject referred to as dynamics is usually taken to mean the study of the kinematics and 
kinetics of particles, rigid bodies and deformable solids. When applied to fluids it is referred 
to as fluid dynamics or hydrodynamics or aerodynamics and is not covered in this book. 

The object of this book is to form a bridge between elementary dynamics and advanced 
specialist applications in engineering. Our aim is to incorporate the terminology and nota- 
tion used in various disciplines such as road vehicle stability, aircraft stability and robotics. 
Any one of these topics is worthy of a complete textbook but we shall concentrate on the 
fundamental principles so that engineering dynamics can be seen as a whole. 

Chapter 1 is a reappraisal of Newtonian principles to ensure that definitions and symbols 
are all carefully defined. Chapters 2 and 3 expand into so-called analytical dynamics typi- 
fied by the methods of Lagrange and by Hamilton’s principle. 

Chapter 4 deals with rigid body dynamics to include gyroscopic phenomena and the sta- 
bility of spinning bodies. 

Chapter 5 discusses four types of vehicle: satellites, rockets, aircraft and cars. Each of 
these highlights different aspects of dynamics. 

Chapter 6 covers the fundamentals of the dynamics of one-dimensional continuous 
media. We restrict our discussion to wave propagation in homogeneous, isentropic, linearly 
elastic solids as this is adequate to show the differences in technique when compared with 
rigid body dynamics. The methods are best suited to the study of impact and other transient 
phenomena. The chapter ends with a treatment of strain wave propagation in helical springs. 
Much of this material has hitherto not been published. 

Chapter 7 extends the study into three dimensions and discusses the types of wave that 
can exist within the medium and on its surface. Reflection and refraction are also covered. 
Exact solutions only exist for a limited number of cases. The majority of engineering prob- 
lems are best solved by the use of finite element and finite difference methods; these are out- 
side the terms of reference of this book. 

Chapter 8 forges a link between conventional dynamics and the highly specialized and 
distinctive approach used in robotics. The Denavit-Hartenberg system is studied as an 
extension to the kinematics already encountered. 

Chapter 9 is a brief excursion into the special theory of relativity mainly to define the 
boundaries of Newtonian dynamics and also to reappraise the fundamental definitions. A 
practical application of the theory is found in the use of the Doppler effect in light propa- 
gation. This forms the basis of velocity measuring equipment which is in regular use. 



xii Preface 

There are three appendices. The first is a summary of tensor and matrix algebra. The sec- 
ond concerns analytical dynamics and is included to embrace some methods which are less 
well known than the classical Lagrangian dynamics and Hamilton’s principle. One such 
approach is that known as the Gibbs-Appell method. The third demonstrates the use 
of curvilinear co-ordinates with particular reference to vector analysis and second-order 
tensors. 

As we have already mentioned, almost every topic covered could well be expanded into 
a complete text. Many such texts exist and a few of them are listed in the Bibliography 
which, in tum, leads to a more comprehensive list of references. 

The important subject of vibration is not dealt with specifically but methods by which the 
equations of motion can be set up are demonstrated. The fimdamentals of vibration and con- 
trol are covered in our earlier book The Principles of Engineering Mechanics, 2nd edn, pub- 
lished by Edward Arnold in 1994. 

The author and publisher would like to thank Briiel and Kjaer for information on the 
Laser Velocity Transducer and SP Tyes UK Limited for data on tyre cornering forces. 

It is with much personal sadness that I have to inform the reader that my co-author, friend 
and colleague, Trevor Nettleton, became seriously ill during the early stages of the prepara- 
tion of this book. He died prematurely of a brain tumour some nine months later. Clearly his 
involvement in this book is far less than it would have been; I have tried to minimize this 
loss. 

Ron Harrison 
January 1997 



Contents 

Preface 

1 Newtonian Mechanics 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
1.10 
1.11 
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 

Introduction 
Fundamentals 
Space and time 
Mass 
Force 
Work and power 
Kinematics of a point 
Kinetics of a particle 
Impulse 
Kinetic energy 
Potential energy 
Coriolis’s theorem 
Newton’s laws for a group of particles 
Conservation of momentum 
Energy for a group of particles 
The principle of virtual work 
D’Alembert’s principle 

2 Lagrange’s Equations 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
2.10 
2.1 1 

Introduction 
Generalized co-ordinates 
Proof of Lagrange’s equations 
The dissipation function 
Kinetic energy 
Conservation laws 
Hamilton’s equations 
Rotating frame of reference and velocity-dependent potentials 
Moving co-ordinates 
Non-holonomic systems 
Lagrange’s equations for impulsive forces 

xi 

1 

1 
1 
2 
3 
5 
5 
6 

11  
12 
13 
13 
14 
15 
17 
17 
18 
19 

21 

21 
23 
25 
27 
29 
31 
33 
35 
39 
41 
43 



viii Contents 

3 Hamilton’s Principle 
3.1 Introduction 
3.2 Derivation of Hamilton’s principle 
3.3 Application of Hamilton’s principle 
3.4 
3.5 Illustrative example 

Lagrange’s equations derived from Hamilton’s principle 

46 
46 
47 
49 
51 
52 

4 Rigid Body Motion in Three Dimensions 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4.1 1 
4.12 
4.13 

Introduction 
Rotation 
Angular velocity 
Kinetics of a rigid body 
Moment of inertia 
Euler’s equation for rigid body motion 
Kinetic energy of a rigid body 
Torque-free motion of a rigid body 
Stability of torque-free motion 
Euler’s angles 
The symmetrical body 
Forced precession 
Epilogue 

5 Dynamics of Vehicles 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
5.10 
5.1 1 
5.12 

Introduction 
Gravitational potential 
The two-body problem 
The central force problem 
Satellite motion 
Effects of oblateness 
Rocket in free space 
Non-spherical satellite 
Spinning satellite 
De-spinning of satellites 
Stability of aircraft 
Stability of a road vehicle 

6 Impact and One-Dimensional Wave Propagation 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
6.10 
6.1 1 

Introduction 
The one-dimensional wave 
Longitudinal waves in an elastic prismatic bar 
Reflection and transmission at a boundary 
Momentum and energy in a pulse 
Impact of two bars 
Constant force applied to a long bar 
The effect of local deformation on pulse shape 
Prediction of pulse shape during impact of two bars 
Impact of a rigid mass on an elastic bar 
Dispersive waves 

55 
55 
55 
58 
59 
61 
64 
65 
67 
72 
75 
76 
80 
83 

85 

85 
85 
88 
90 
93 

100 
103 
106 
107 
107 
109 
1 I8 

125 
125 
125 
128 
130 
132 
133 
136 
138 
141 
145 
149 



Contents ix 

6.12 
6.13 Waves in periodic structures 
6.14 

Waves in a uniform beam 

Waves in a helical spring 

7 Waves in a Three-Dimensional Elastic Solid 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
7.10 

Introduction 
Strain 
Stress 
Elastic constants 
Equations of motion 
Wave equation for an elastic solid 
Plane strain 
Reflection at a plane surface 
Surface waves (Rayleigh waves) 
Conclusion 

8 Robot Arm Dynamics 

8.1 Introduction 
8.2 Typical arrangements 
8.3 Kinematics of robot arms 
8.4 Kinetics of a robot arm 

9 Relativity 

9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9.7 
9.8 
9.9 
9.10 
9.1 1 
9.12 

Introduction 
The foundations of the special theory of relativity 
Time dilation and proper time 
Simultaneity 
The Doppler effect 
Velocity 
The twin paradox 
Conservation of momentum 
Relativistic force 
Impact of two particles 
The relativistic Lagrangian 
Conclusion 

Problems 

Appendix 1 - Vectors, Tensors and Matrices 

Appendix 2 - Analytical Dynamics 

Appendix 3 - Curvilinear Co-ordinate Systems 

155 
161 
1 63 

172 

172 
172 
176 
177 
178 
179 
184 
186 
189 
192 

194 

194 
194 
197 
223 

235 

235 
235 
240 
24 1 
242 
246 
249 
250 
252 
254 
256 
258 

261 

272 

281 

288 

Bibliography 297 

Index 299 



Newtonian Mechanics 

1.1 Introduction 

The purpose of this chapter is to review briefly the assumptions and principles underlying 
Newtonian mechanics in a form that is generally accepted today. Much of the material to be 
presented is covered in more elementary texts (Harrison and Nettleton 1994) but in view of 
the importance of having clear definitions of the terms used in dynamics all such terms will 
be reviewed. 

Many of the terms used in mechanics are used in everyday speech so that misconceptions 
can easily arise. The concept of force is one that causes misunderstanding even among those 
with some knowledge of mechanics. The question as to whether force is the servant or the 
master of mechanics ofien.lies at the root of any difficulties. We shall consider force to 
be a useful servant employed to provide communication between the various aspects of 
physics. The newer ideas of relativity and quantum mechanics demand that all definitions 
are reappraised; however, our definitions in Newtonian mechanics must be precise so that 
any modification required will be apparent. Any new theory must give the same results, 
to within experimental accuracy, as the Newtonian theory when dealing with macro- 
scopic bodies moving at speeds which are slow relative to that of light. This is because 
the degree of confidence in Newtonian mechanics is of a very high order based on 
centuries of experiment. 

1.2 Fundamentals 

The earliest recorded writings on the subject of mechanics are those of Aristotle and 
Archimedes some two thousand years ago. Although some knowledge of the principles of 
levers was known then there was no clear concept of dynamics. The main problem was that 
it was firmly held that the natural state of a body was that of rest and therefore any motion 
required the intervention of some agency at all times. It was not until the sixteenth century 
that it was suggested that straight line steady motion might be a natural state as well as rest. 
The accurate measurement of the motion of the planets by Tycho Brahe led Kepler to enun- 
ciate his three laws of planetary motion in the early part of the seventeenth century. Galileo 
added another important contribution to the development of dynamics by describing the 
motion of projectiles, correctly defining acceleration. Galileo was also responsible for the 
specification of inertia, which is a body’s natural resistance to a change velocity and is asso- 
ciated with its mass. 
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Newton acknowledged the contributions of Kepler and Galileo and added two more 
axioms before stating the laws of motion. One was to propose that earthly objects obeyed 
the same laws as did the Moon and the planets and, consequently, accepted the notion of 
action at a distance without the need to specify a medium or the manner in which the force 
was transmitted. 

The first law states 

a body shall continue in a state of rest or of uniform motion in a straight line unless 
impressed upon by a force. 

This repeats Galileo’s idea of the natural state of a body and defines the nature of force. 
The question of the frame of reference is now raised. To clarify the situation we shall regard 
force to be the action of one body upon another. Thus an isolated body will move in a 
straight line at constant speed relative to an inertial frame of reference. This statement could 
be regarded as defining an inertial fiame; more discussion occurs later. 

The second law is 

the rate of change of momentum is proportional to the impressed force and takes place 
in the same direction as the force. 

This defines the magnitude of a force in terms of the time rate of change of the product 
of mass and velocity. We need to assume that mass is some measure of the amount of 
matter in a body and is tcrbe regarded as constant. 

The first two laws &e more in the form of definitions but the third law which states that 

to every action cforce) there is an equal and opposite reaction cforce) 

is a law which can be tested experimentally. 
Newton’s law of gravity states that 

the gravitational force of attraction between two bodies, one of mass m, and one of 
mass m2. separated by a distance d, is proportional to m,mJd2 and lies along the line 
joining the two centres. 

This assumes that action at a distance is instantaneous and independent of any motion. 
Newton showed that by choosing a frame of reference centred on the Sun and not rotat- 

ing with respect to the distant stars his laws correlated to a high degree of accuracy with the 
observations of Tycho Brahe and to the laws deduced by Kepler. This set of axes can be 
regarded as an inertial set. According to Galileo any frame moving at a constant speed rel- 
ative to an inertial set of axes with no relative rotation is itself an inertial set. 

1.3 Space and time 
Space and time in Newtonian mechanics are independent of each other. Space is three 
dimensional and Euclidean so that relative positions have unique descriptions which are 
independent of the position and motion of the observer. Although the actual numbers 
describing the location of a point will depend on the observer, the separation between two 
points and the angle between two lines will not. Since time is regarded as absolute the time 
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between two events will not be affected by the position or motion of the observer. This last 
assumption is challenged by Einstein’s special theory of relativity. 

The unit of length in SI units is the metre and is currently defined in terms of the wave- 
length of radiation of the krypton-86 atom. An earlier definition was the distance between 
two marks on a standard bar. 

The unit of time is the second and this is defined in terms of the frequency of radiation of 
the caesium-133 atom. The alternative definition is as a given fraction of the tropical year 
1900, known as ephemeris time, and is based on a solar day of 24 hours. 

1.4 Mass 
The unit of mass is the kilogram and is defined by comparison with the international proto- 
type of the kilogram. We need to look closer at the ways of comparing masses, and we also 
need to look at the possibility of there being three types of mass. 

From Newton’s second law we have that force is proportional to the product of mass and 
acceleration; this form of mass is known as inertial mass. From Newton’s law of gravitation 
we have that force on body A due to the gravitational attraction of body B is proportional to 
the mass of A times the mass of B and inversely proportional to the square of their separa- 
tion. The gravitational field is being produced by B so the mass of B can be regarded as an 
active mass whereas body A is reacting to the field and its mass can be regarded as passive. 
By Newton’s third law the force that B exerts on A is equal and opposite to the force that A 
exerts on B, and therefore from the symmetry the active mass of A must equal the passive 
mass of A. 

Let inertial mass be denoted by m and gravitational mass by p. Then the force on mass A 
due to B is 

where G is the universal gravitational constant and d is the separation. By Newton’s second 
law 

where v is velocity and a is acceleration. 

the acceleration of A 
Equating the expressions for force in equations ( 1.1) and ( 1.2) gives 

where g = GpB/d2 is the gravitationaljeld strength due to B. If the mass of B is assumed to be 
large compared with that of body A and also of a third body C, as seen in Fig. 1.1, we can write 

on the assumption that, even though A is close to C, the mutual attraction between A and C 
in negligible compared with the effect of B. 

If body A is made of a different material than body C and if the measured free fall accel- 
eration of body A is found to be the same as that of body C it follows that pA/mA = pc/mc. 
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Fig. 1.1 

More sophisticated experiments have been devised to detect any change in the ratio of 
inertial to gravitational mass but to date no measurable variation has been found. It is now 
assumed that this ratio is constant, so by suitable choice of units the inertial mass can be 
made equal to the gravitational mass. 

The mass of a body can be evaluated by comparison with the standard mass. This can 
be done either by comparing their weights in a sensibly constant gravitational field or, in 
principle, by the results of a collision experiment. If  two bodies, as shown in Fig. 1.2, are 
in colinear impact then, owing to Newton’s third law, the momentum gained by one body 
is equal to that lost by the other. Consider two bodies A and B having masses mA and 
m, initially moving at speeds uA and uB, u, > uB. After collision their speeds are vA and 
vB.  Therefore, equating the loss of momentum of A to the gain in momentum of B we 
obtain 

M A  (uA - vA)  = m~ ( V B  - ue) (1.5) 

Fig. 1.2 
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so that 
m B  - u A - v A  

mA ' B -  u B  

- -  

Thus if the mass of A is known then the mass of B can be calculated. 

1.5 Force 

We shall formally define force to be 

the action of one body upon another which, ifacting alone, would cause an accelera- 
tion measured in an inertial frame of reference. 

This definition excludes terms such as inertia force which are to be regarded as fictitious 
forces. When non-inertial axes are used (discussed in later chapters) then it is convenient to 
introduce fictitious forces such as Coriolis force and centrifugal force to maintain thereby a 
Newtonian form to the equations of motion. 

If experiments are conducted in a lift cage which has a constant acceleration it is, for a 
small region of space, practically impossible to tell whether the lift is accelerating or the 
local value of the strength of the gravity field has changed. This argument led Einstein to 
postulate the principle of equivalence which states that 

all local, f i e l y  falling, non-rotating laboratories are f i l ly  equivalent for the pe$or- 
mance of all physical experiments. 

This forms the basis of the general theory of relativity but in Newtonian mechanics freely 
falling frames will be considered to be accelerating frames and therefore non-inertial. 

1.6 Work and power 

We have now accepted space, time and mass as the fundamental quantities and defined force 
in terms of these three. We also tacitly assumed the definitions of velocity and acceleration. 
That is, 

velocity is the time rate of change of position and acceleration is the time rate of 
change of velocity. 

Since position is a vector quantity and time is a scalar it follows that velocity and accelera- 
tion are also vectors. By the definition of force it also is a vector. 

Work is formally defined as 

the product of a constant force and the distance moved, in the direction of the force, 
by the particle on which the force acts. 

If F is a variable force and ds is the displacement of the particle then the work done is the 
integral of the scalar product as below 

W = sF*ds (1.7) 
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Typical misuse of the definition of work is the case of a wheel rolling without slip. The tan- 
gential force at the contact point of the rim of the wheel and the ground does not do any work 
because the particle on the wheel at the contact point does not move in the direction of the 
force but normal to it. As the wheel rolls the point of application of the force moves along the 
ground but no work is done. If sliding takes place the work definition cannot be applied 
because the particle motion at the contact point is complex, a sticWslip situation occurring 
between the two surfaces. Also the heat which is generated may be passing in either direction. 

Power is simply the rate of doing work. 

1.7 Kinematics of a point 

The position of a point relative to the origin is represented by thefree vectur r. This is rep- 
resented by the product of the scalar magnitude, r, and a unit vector e 

r = re (1.8) 
Velocity is by definition 

d r  dr de 
dt dt dt e +  r -  (1 -9) 

The change in a unit vector is due only to a change in direction since by definition its 
magnitude is a constant unity. From Fig. 1.3 it is seen that the magnitude of de is l-de and 
is in a direction normal to e. The angle de can be represented by a vector normal to both e 
and de. 

It is important to know that finite angles are not vector quantities since they do not obey 
the parallelogram law of vector addition. This is easily demonstrated by rotating a box 
about orthogonal axes and then altering the order of rotation. 

Non-vectorial addition takes place if the axes are fixed or if the axes are attached to the 
box. A full discussion of this point is to be found in the chapter on robot dynamics. 

The change in the unit vector can be expressed by a vector product thus 

y = -= - 

d e = d B x  e (1.10) 

Dividing by the time increment dt 
de - -  - a x e  (1.11) 
dt 

Fig. 1.3 
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where o = dWdt is the angular velocity of the unit vector e. Thus we may write v = r = re 
+ r ( o  x e)  = re + o x r. It is convenient to write this equation as 

. .  

) I = - - -  & - dr + a x r  (1.12) dt at 

where the partial differentiation is the rate of change of r as seen from the moving axes. The 
form of equation (1.12) is applicable to any vector Y expressed in terms of moving co- 
ordinates, so 

(1.13) - - -  dv-  av+ o x  v 
dt dt 

Acceleration is by definition 
dv . 
dt 

and by using equation ( 1.13) 

a = - = v  

av 
at 

av ar 
at at 

11 = -  + o x v  (1.14) 

Using equation ( 1.12) 

u = - + + w X - + w X ( o X r )  ( 1.14a) 

In Cartesian eo-ordinates 

Here the unit vectors, see Fig. 1.4, are fixed in direction so differentiation is simple 

r =  x i + y j + z k  (1.15) 

v =  x i + y j + z k  (1.16) 

and 
a =  x i + y j + z k  (1.17) 

Fig. 1.4 Cartesian co-ordinates 

Ajay k Sharma
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In cylindrical co-ordinates 

From Fig. 1.5 we see that 
r =  ReR +zk (1.18) 

and 
a =  0k 

so, using equation (1.12), 

v = (Re, + ik) + o X (Re, + zk) 
= Re, + zk + Ree, 
= Re, + R b ,  + ik (1.19) 

Differentiating once again 
a = ieR+R&?,, + R 0 e 0 + 2 k + o X  v 

= ReR + Rb, + Ree, + zk + b(&, - Riie,) 
= (R - Re2)eR + (Re + 2h)e,  + zk ( 1.20) 

Fig. 1.5 Cylindrical eo-ordinates 

In spherical eo-ordinates 

From Fig. 1.6 we see that o has three components 

o = isin 8 e, - be, + i c o s s e ,  

r = re, (1.21) 
Now 

Therefore 
v = r e , + o x r .  

= ie, + bye, + ecos 0 re, 
= ie, + d c o s ~ e ,  +rbe, (1.22) 
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Fig. 1.6 Spherical co-ordinates 

Differentiating again 
dV 

a = - + o x v  
at 

= rer + (i8cos 0 + re  cos 0 - i s i n  0 &)e, + (%+ rS)e, 

it cos 0 

rii e0 I er e, 

i- Ye cos 0 

(;.- ni’ - Ye’ cos O)er 

+ 1 itsin0 -0 

= 
+ ( ~ . ~ c o s o + ~ ~ ~ c o s ~  - r i s i n o b -  n i ~ i s i n 0  + i 8 c o s ~ > e ,  

+ ( io  + n i i + r i ~ s i n 0 c o s 0 + i b ) e ,  

+ ( 2 i i  cos 0 + rii cos 0 - 2Yeb sin ole, 
+ (2i.b + rij + Ye2 sin 0 cos ole,, 

= (; - rb’ - ri2 cos O)er 

( 1.23) 

In Path co-ordinates 

Figure 1.7 shows a general three-dimensional curve in space. The distance measured along 
the curve from some arbitrary origin is denoted by s. At point P the unit vector f is tangent 
to the curve in the direction of increasing s. The unit vector n is normal to the curve and 
points towards the centre of curvature of the osculating circle which has a local radius p. The 
unit vector b is the bi-normal and completes the right-handed triad. 

The position vector is not usually quoted but is 

r = r, + J tds  

The velocity is 
v = st (1.24) 
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Fig. 1.7 Path co-ordinates 

From Fig. 1.8 it is seen that the angular velocity of the unit vector triad is o = eb + f t .  There 
cannot be a component in the n direction since by definition there is no curvature when the 
curve is viewed in the direction of arrow A. 

The acceleration is therefore 

a = i t  + O x v = i t +  e6 x i t  
= s t + s e n  (1.25) 

It is also seen that S = p i ;  hence the magnitude of the centripetal acceleration is 
Sfj = p i ’ =  S2Jp (1.26) 

From Fig. 1.7 we see that ds = p de and also that the change in the tangential unit vector 
is 

dt = d e n  

Fig. 1.8 Details of path co-ordinates 
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Dividing by ds gives 

(1.27) 

The reciprocal of the radius of curvature is known as the curvature K. Note that curvature is 
always positive and is directed towards the centre of curvature. So 

= w t  
dt 
ds 
- (1.28) 

The rate at which the bi-normal, b, rotates about the tangent with distance along the curve 
is known as the torsion or tortuosity of the curve T. 
By definition 

- m - -  d b -  
ds 

The negative sign is chosen so that the torsion of a right-handed helix is positive. 
Now n = b X t so 

(1.29) 

dt - -  d n - d b x t + b x -  
d s d s  ds 

Substituting from equations ( 1.29) and (1.28) we have 

- -m x t + b X wt 
dn 
ds 
- -  

= rb - X t  (1.30) 

Equations (1.28) to (1.30) are known as the Sewer-Frenet formulae. From equation ( I  .27) 
we see that 6 = Ks and from Fig. 1.8 we have f = rS. 

1.8 Kinetics of a particle 

In the previous sections we considered the kinematics of a point; here we are dealing with 
a particle. A particle could be a point mass or it could be a body in circumstances where its 
size and shape are of no consequence, its motion being represented by that of some specific 
point on the body. 

A body of mass m moving at a velocity v has, by definition, a momentum 

p = mv 

By Newton’s second law the force F is given by 

(1.31) 

It is convenient to define a quantity known as the moment of a force. This takes note of 
the line of action of a force F passing through the point P, as shown in Fig. 1.9. The moment 
of a force about some chosen reference point is defined to have a magnitude equal to the 
magnitude of the force times the shortest distance from that line of action to that point. The 
direction of the moment vector is taken to be normal to the plane containing F and r and the 
sense is that given by the right hand screw rule. The moment of the force F about 0 is 

M = IF lde  = I F I I r l s i n a e  
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Fig. 1.9 Moment of a force 

and, fiom the definition of the vector product of two vectors, 

M = r X F  

So, fiom equation (1.3 1) we have 

(1 -32) r X F= r X - d p - d  - - ( r  Xp) 
dt dt 

The last equality is true because i = v which is parallel top. We can therefore state that 

the moment of fome about a given point is equal to the rate of change of moment of 
momentum about that same point. 

Here we prefer to use ‘moment of momentum’ rather than ‘angular momentum’, which we 
reserve for rigid body rotation. 

1.9 Impulse 

Integrating equation (1 -3 1) with respect to time we have 
2 

J F d t =  A p = p 2 - p I  (1.33) 
I 

The integral is known as the impulse, so in words 

impulse equals the change in momentum 

From equation 1.32 we have 

d 
dt 

M =  - ( r x p )  

so integrating both sides with respect to time we have 
2 

J M d t  = A ( r ~ p ) =  ( r ~ p ) ~ - ( r x p ) ,  (1.34) 
I 
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The integral is known as the moment of the impulse, so in words 

moment of the impulse equals the change in the moment of momentum 

1.10 Kinetic energy 

Again from equation (1.3 1) 
dv 

F =  m- 
dt 

so integrating with respect to displacement we have 

dv ds 
JF-ds = Jm - ds = Jm - dv = Jmvedv dt dt 

m m 
2 2 

= - v v  + constant = - v 2  + constant 

The term mv2/2 is called the kinetic energy of the particle. Integrating between limits 1 
and 2 

m . ,  m 2  
2 2 

JfF-ds = - V ;  - - V I  (1.35) 

or, in words, 

the work done is equal to the change in kinetic energy 

1.1 1 Potential energy 

If the work done by a force depends only on the end conditions and is independent of the 
path taken then the force is said to be conservative. It follows from this definition that if the 
path is a cldsed loop then the work done by a conservative force is zero. That is 

$ F ~ s  = 0 (1.36) 

Consider a conservative force acting on a particle between positions 1 and 2. Then 

m m 2  J*F.ds = W2 - W ,  = - V\ - - V I  
2 2 

(1.37) 

Here W is called the work function and its value depends only on the positions of points 1 
and 2 and not on the path taken. 

The potential energy is defined to be the negative of the work function and is, here, given 
the symbol 0. Equation (1.37) may now be written 

0 = ( o2 + - v 2  ; 2 ) - ( 0 , + ; 4 )  (1.38) 

Potential energy may be measured from any convenient datum because it is only the differ- 
ence in potential energy which is important. 
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1.12 Coriolis’s theorem 

It is often advantageous to use reference axes which are moving with respect to inertial axes. 
In Fig. 1-10 the x’y’z’ axes are translating and rotating, with an angular velocity a, with 
respect to the xyz axes. 

The position vector, OP, is 

r = R + r’ = 00’ + O’p (1.39) 

Differentiating equation (1.39), using equation (1.13), gives the velocity 

i = R + v1 + 0 x r‘ (1.40) 

where v‘ is the velocity as seen from the moving axes. 
Differentiating again 

.. 
? = R + u ’ + i , x r ’ + o ~ v ’ + o x ( v ’ + w ~ r ’ )  

= i +  0’ + c;>x r’ + 2 0  x v’ + 0 x (0 x r‘) (1.41) 

where u’ is the acceleration as seen from the moving axes. 
Using Newton’s second law 

F = m F =  m [ R +  u’ + o x  r’ + 2 0  X v’ + 0 X (a X r ’ ) ]  ( 1.42) 

Expanding the triple vector product and rearranging gives 

F - m i  - mi, x r‘ - 2mo x V I  - m[o (0 - r ‘ )  - a2rr 1 = mu‘ (1.43) 

This is known as Coriolis S theorem. 
The terms on the left hand side of equation (1.43) comprise one real force, F, and four 

fictitious forces. The second term is the inertia force due to the acceleration of the origin 0’, 
the third is due to the angular acceleration of the axes, the fourth is known as the Coriolis 
force and the last term is the centrifugal force. The centrifugal force through P is normal to 
and directed away from the w axis, as can be verified by forming the scalar product with a. 
The Coriolis force is normal to both the relative velocity vector, v‘, and to a. 

Fig. 1.10 
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1.13 Newton's laws for a group of particles 

Consider a group of n particles, three of which are shown in Fig. 1.1 1, where the ith parti- 
cle has a mass rn, and is at a position defined by r, relative to an inertial frame of reference. 
The force on the particle is the vector sum of the forces due to each other particle in the 
group and the resultant of the external forces. If & is the force on particle i due to particle 
j and F, is the resultant force due to bodies external to the group then summing over all par- 
ticles, except fori  = i, we have for the ith particle 

( 1.44) C AJ + F, = mlrl 
I 

We now form the sum over all particles in the group c YAJ '2 Fl = c rnlrl (1.45) 
I I  I  

The first term sums to zero because, by Newton's third law,& = -XI. Thus 

C F, = C r n l P 1  ( 1.46) 
1 I 

The position vector of the centre of mass is defined by 

mlrl = ( C  m, ) r, = mr, (1.47) T I  

F 
where m is the total mass and r, is the location of the centre of mass. It follows that 

m,r, = mr, (1.48) 

Fig. 1.11 
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and 

miFi = mr, c (1.49) 
i 

Therefore equation (1.46) can be written 

d 5: Fi = mr, = - (mi,) 
I d t  (1.50) 

This may be summarized by stating 

the vector sum of the external forces is equal to the total mass times the acceleration 
of the centre of mass or to the time rate of change of momentum. 

A moment of momentum expression for the ith particle can be obtained by forming the 
vector product with ri of both sides of equation (1.44) 

ri X f, + ri x Fi = ri X miri (1.51) 
i 

Summing equation (1.5 1) over n particles 

x r l  x F, +E rl x ~h = rl x mlr1 = (1.52) 
J 

i 1 i I 

The double summation will vanish if Newton’s third law is in its strong form, that isf, = -xi and also they are colinear. There are cases in electromagnetic theory where the equal 
but opposite forces are not colinear. This, however, is a consequence of the special theory 
of relativity. 

Equation (1.52) now reads 

(1.53) d 
C ri X Fi = - C ri X mi;, 
1 dt i 

and using M to denote moment of force and L the moment of momentum 

d 
M ,  = - 

dt  Lo 

Thus, 

the moment of the external forces about some arbitrary point is equal to the time rate 
of change of the moment of momentum (or the moment of the rate of change of momen- 
tum) about that point. 

The position vector for particle i may be expressed as the sum of the position vector of 
the centre of mass and the position vector of the particle relative to the centre of mass, or 

ri = r, + pi 

Thus equation (1.53) can be written 
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1.14 Conservation of momentum 

Integrating equation (1.46) with respect to time gives 

Z J F i d t  = ACmlil  
I I 

That is, 

(1.53a) 

(1.54) 

the sum of the external impulses equals the change in momentum of the system. 

It follows that if the external forces are zero then the momentum is conserved. 
Similarly from equation (1.53) we have that 

the moment of the external impulses about a given point equals the change in moment 
of momentum about the same point. 

E Jr ,  X F, dt = A X  r, x m,rl 
I 1 

From which it follows that if the moment of the external forces is zero the moment of 
momentum is conserved. 

1.15 Energy for a group of particles 

Integrating equation (1.45) with respect to displacement yields 

(1.55) 

The first term on the left hand side of the equation is simply the work done by the exter- 
nal forces. The second term does.. not vanish despite& = -$! because the displacement of 
the ith particle, resolved along the line joining the two particles, is only equal to that of 
thejth particle in the case of a rigid body. In the case of a deformable body energy is 
either stored or dissipated. 
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If the stored energy is recoverable, that is the process is reversible, then the energy stored 

The energy equation may be generalized to 
is a form of potential energy which, for a solid, is called strain energy. 

work done by external forces = AV + AT + losses (1.56) 
where AV is the change in any form of potential energy and AT is the change in kinetic 
energy. The losses account for any energy forms not already included. 

The kinetic energy can be expressed in terms of the motion of the centre of mass and 
motion relative to the centre of mass. Here p is the position of a particle relative to the cen- 
tre of mass, as shown in Fig. 1.12. 

T = 1 E mir;ri . * = - 1 C m,<iG + pi> * (iG + pi)  
1 i 

2 2 

- -  - ' mrG - 2  + - ' C m i p i  m =E mi (1.57) 

The other two terms of the expansion are zero by virtue of the definition of the centre of 
mass. From this expression we see that the kinetic energy can be written as that of a point 
mass, equal to the total mass, at the centre of mass plus that due to motion relative to the 
centre of mass. 

i i 
2 2 

Fig. 1.12 

1.16 The principle of virtual work 

The concept of virtuai work evolved gradually, as some evidence of the idea is inherent in 
the ancient treatment of the principle of levers. Here the weight or force at one end of a lever 
times the distance moved was said to be the same as that for the other end of the lever. This 
notion was used in the discussion of equilibrium of a lever or balance in the static case. The 
motion was one which could take place rather than any actual motion. 

The formal definition of virtual displacement, 6r, is any displacement which could take 
place subject to any constraints. For a system having many degrees of freedom all displace- 
ments save one may be held fixed leaving just one degree of freedom. 
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From this definition virtual work is defined as F.6r where F is the force acting on the par- 
ticle at the original position and at a specific time. That is, the force is constant during the 
virtual displacement. For equilibrium 

(1.58) 

Since there is a choice of which co-ordinates are fixed and which one is fiee it means that 
for a system with n degrees of freedom n independent equations are possible. 

If  the force is conservative then F.6r = 6 W, the variation of the work function. By defi- 
nition the potential energy is the negative of the work function; therefore F.6r = -6 V. 

In general if both conservative and non-conservative forces are present 

z F i . d r  = 0 = 6W 
I 

(Fi. nm-con + F,, ,,) . 6r, = 0 

or 

(Fi. non-con) . 6‘1 = 6‘ 
That is, 

(1.59) 

the virtual work done by the non-conservative forces = 6V 

1.17 D‘Alembett’s principle 

In 1743 D’Alembert extended the principle of virtual work into the field of dynamics by 
postulating that the work done by the active forces less the ‘inertia forces’ is zero. If F is a 
real force not already included in any potential energy term then the principle of virtual 
work becomes 

(1.60) 

This is seen to be in agreement with Newton’s laws by considering the simple case of a par- 
ticle moving in a gravitational field as shown in Fig. 1.13. The potential energy V = mgv so 
D’ Alembert’s principle gives 

C(Fi - rnii;,)-6ri = 6V 
i 

av av 
ax aY [ ( F ,  - M)i + (F,, - m y ) j ] . ( S x i  + Sy j )  = 6 V =  - 6x + - 6y 

(F, - m.f) 6x + (F, - my) Sy = mgSy (1.61) 

Because 6x and 6y are independent we have 

(F, - miI6x = 0 

or 

F, = mi 

and 

(F, - my)6y = mgsy  

or 

F, - mg = my 

(1.62) 

(1.63) 
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Fig. 1.13 

As with the principle of virtual work and D’Alembert’s principle the forces associated 
with workless constraints are not included in the equations. This reduces the number of 
equations required but of course does not furnish any information about these forces. 
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2.1 Introduction 

The dynamical equations of J.L. Lagrange were published in the eighteenth century some 
one hundred years after Newton’s Principia. They represent a powerful alternative to the 
Newton-Euler equations and are particularly useful for systems having many degrees of 
freedom and are even more advantageous when most of the forces are derivable from poten- 
tial functions. 

The equations are 

where 
3L is the Lagrangian defined to be T- V, 
Tis the kinetic energy (relative to inertial axes), 
V is the potential energy, 
n is the number of degrees of freedom, 
q ,  to qn are the generalized co-ordinates, 
Q, to Q,, are the generalized forces 

and ddt means differentiation of the scalar terms with respect to time. Generalized co- 
ordinates and generalized forces are described below. 

Partial differentiation with respect to qi is carried out assuming that all the other q, all the 
q and time are held fixed. Similarly for differentiation with respect to qi all the other q, all 
q and time are held fixed. 

We shall proceed to prove the above equations, starting from Newton’s laws and 
D’Alembert’s principle, during which the exact meaning of the definitions and statements 
will be illuminated. But prior to this a simple application will show the ease of use. 

A mass is suspended from a point by a spring of natural length a and stiffness k, 
as shown in Fig. 2.1. The mass is constrained to move in a vertical plane in which 
the gravitational field strength is g. Determine the equations of motion in terms 
of the distance r from the support to the mass and the angle 0 which is the angle 
the spring makes with the vertical through the support point. 
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Fig. 2.1 

The system has two degrees of freedom and rand 8, which are independent, can 
serve as generalized co-ordinates. The expression for kinetic energy is 

and for potential energy, taking the horizontal through the support as the datum 
for gravitational potential energy, 

k 2 V = -mgrcos 0 + - ( r -a)  2 

so 

Applying Lagrange's equation with 9, = r we have 

so 

and 

- -  ax - mrb2 + m g c o s 8  - k(r - a)  
dr  

From equation (2.1) 

-( d ax ) - ( $ ) = e  
dt ar' 
mf - mr0' - m g c o s 8  + k(r - a )  = 0 (i) 

The generalized force Q, = 0 because there is no externally applied radial force 
that is not included in V. 
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Taking 0 as the next generalized co-ordinate 

a'p. 
ae 
- = mr26 

so 

and 

- -  a' - mgr sin 0 ae 
Thus the equation of motion in 0 is 

2mn4  + mr2e - mgr sin 0 = o (ii) 
The generalized force in this case would be a torque because the corresponding 
generalized co-ordinate is an angle. Generalized forces will be discussed later in 
more detail. 

Dividing equation (ii) by r gives 

2 m ~ O  + mrb  - mgsin 0 = o (iia) 
and rearranging equations (i) and (ii) leads to 

' 2  mgcos0 - k(r - a) = m(r - r e )  

and 

-mgsin 0 = m(2r.e + r e )  (iib) 

which are the equations obtained directly from Newton's laws plus a knowledge 
of the components of acceleration in polar co-ordinates. 

In this example there is not much saving of labour except that there is no 
requirement to know the components of acceleration, only the components of 
velocity. 

2.2 Generalized co-ordinates 

A set of generalized co-ordinates is one in which each co-ordinate is independent and the num- 
ber of co-ordinates is just sufficient to specify completely the configuration of the system. A 
system of N particles, each free to move in a three-dimensional space, will require 3N co- 
ordinates to specify the configuration. If Cartesian co-ordinates are used then the set could be 

{XI Yl ZI x2 Y2 2 2 .  * . XN Y N  ZN) 

or 
tX1 xZ x3 x4 x 5  x6 * . . x n - 2  x n - /  x n >  

where n = 3N. 
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This is an example of a set of generalized co-ordinates but other sets may be devised 
involving different displacements or angles. It is conventional to designate these co- 
ordinates as 

(41 q 2  q3 q 4  4s 46 - .  * q n - 2  q n - I  q n )  

If there are constraints between the co-ordinates then the number of independent co-ordi- 
nates will be reduced. In general if there are r equations of constraint then the number of 
degrees of freedom n will be 3N - r. For a particle constrained to move in the xy plane the 
equation of constraint is z = 0. If two particles are rigidly connected then the equation of 
constraint will be 

(x2 - XJ2 + 63 - y,)2 + (22 - z1>2 = L2 

That is, if one point is known then the other point must lie on the surface of a sphere of 
radius L. If x1 = y, = z, = 0 then the constraint equation simplifies to 

Differentiating we obtain 

2x2 dx2 + 2y2 dy2 4 2.7, dz2 = 0 

This is a perfect differential equation and can obviously be integrated to form the constraint 
equation. In some circumstances there exist constraints which appear in differential form 
and cannot be integrated; one such example of a rolling wheel will be considered later. A 
system for which all tbe constraint equations can be written in the fomf(q,. . .qn) = con- 
stant or a known function of time is referred to as holonomic and for those which cannot it 
is called non-holonomic. 

If the constraints are moving or the reference axes are moving then time will appear 
explicitly in the equations for the Lagrangian. Such systems are called rheonomous and 
those where time does not appear explicitly are called scleronomous. 

Initially we will consider a holonomic system (rheonomous or scleronomous) so that the 
Cartesian co-ordinates can be expressed in the form 

(2.2) Xl = x, (41 q2 * * f qrtt) 

By the rules for partial differentiation the differential of equation (2.2) with respect to time is 

so 

thus 

dt at2 

Differentiating equation (2.3) directly gives 
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and comparing equation (2.5) with equation (2.6), noting that vi = xi, we see that 

aii  - axi - -  - 
a q j  aqj 

a process sometimes referred to as the cancellation of the dots. 
From equation (2.2) we may write 

hi = x $ d q j  + -dt ax, 
at 

i 
Since, by definition, virtual displacements are made with time constant 

These relationships will be used in the proof of Lagrange’s equations. 

2.3 Proof of Lagrange‘s equations 

The proof starts with D’Alembert’s principle which, it will be remembered, is an extension 
of the principle of virtual work to dynamic systems. D’Alembert’s equation for a system of 
Nparticles is 

2 (F - rnliy6r; = 0 1 S i S N  (2.10) 
I 

where 6r; is any virtual displacement, consistent with the constraints, made with time fixed. 

(2.1 1) 

Writing r, = x, i  + x z j  + x,k etc. equation (2.10) may be written in the form 

(6 - rnlxl)6xl = 0 1 S i S n  = 3N 
1 

Using equation (2.9) and changing the order of summation, the first summation in equation 
(2.1 1 ) becomes 

the virtual work done by the forces. Now W = W(qj) so 

(2.12) 

(2.13) 

and by comparison of the coefficients of 6q in equations (2.12) and (2.13) we see that 

(2.14) 

This term is designated Q, and is known as a generalized force. The dimensions of this quan- 
tity need not be those of force but the product of the generalized force and the associated 
generalized co-ordinate must be that of work. In most cases this reduces to force and dis- 
placement or torque and angle. Thus we may write 

6W =E Q$qj 
j 

(2.15) 
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In a large number of problems the force can be derived from a position-dependent poten- 
tial V, in which case 

e . = - -  av *, 
Equation (2.13) may now be written 

where Qj now only applies to forces not derived from a potential. 
Now the second summation term in equation (2.1 1) is 

or, changing the order of summation, 

(2.16) 

(2.17) 

(2.18) 

We now seek a form for the right hand side of equation (2.18) involving the kinetic energy 
of the system in terms of the generalized co-ordinates. 

The kinetic energy of the system of N particles is 

Thus 

because the dots may be cancelled,see equation (2.7). Differentiating wLrespect to time gives 

but 

so 

Substitution of equation (2.19) into equation (2.18) gives 

m,f,  ax, =E[- d (-) aT - "1 6qj 
i d t  aqi 

I 

(2.19) 

(2.20) 

Substituting from equations (2.17) and (2.20) into equation 2.1 1 leads to 
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I 
Because the q are independent we can choose i3qj to be non-zero whilst all the other Sq are 
zero. So 

Alternatively since Vis taken not to be a function of the generalized velocities we can write 
the above equation in terms of the Lagrangian ‘f = T - V 

(2.2 1 )  

In the above analysis we have taken n to be 3N but if we have r holonomic equations of 
constraint then n = 3N - r. In practice it is usual to write expressions for T and Vdirectly 
in terms of the reduced number of generalized co-ordinates. Further, the forces associated 
with workless constraints need not be included in the analysis. 

For example, if a rigid body is constrained to move in a vertical plane with they axis ver- 
tically upwards then 

.2 T = 1If (xi + $) + ’. 8 and V = mgy, 2 2 

The constraint equations are fully covered by the use of total mass and moment of inertia 
and the suppression of the z, co-ordinate. 

2.4 The dissipation function 

If there are forces of a viscous nature that depend linearly on velocity then the force is given 
by 

F, =-Xc,X, 
/ 

where c, are constants. 
The power dissipated is 

P = cF,x, 

P = X Q , q ,  

Q, = -XCy 4, 

I 

In terms of generalized forces 

and 

J 

where C, are related to e,, (the exact relationship does not concern us at this point). 
The power dissipated is 

P = -XQJ4, 
By differentiation 
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If we now define $ = PI2 then 

af = -ei 
aqi 

(2.22) 

The term j F  is known as Rayleigh 5 dissipative function and is half the rate at which power 
is being dissipated. 

Lagrange’s equations are now 

“(E) dt a$ - (g) + $ = Q. J (2.23) 

where Qj is the generalized force not obtained from a position-dependent potential or a 
dissipative function. 

EXAMPLE 

For the system shown in Fig. 2.2 the scalar functions are 

k, 2 k2 Y = -XI + -(x2 - XJ2 
2 2 

Ci -2 C2 

2 2 3 = -XI  + - ( X 2  - X,f 

The virtual work done by the external forces is 

6W = F ,  6x, + F, 6x, 

For the generalized co-ordinate x, application of Lagrange’s equation leads 
to 

m,x, + k,x1 - k2(x2 - XI) + c,X, - ~ 2 ( X 2  - XI) = F, 

and for x, 

m g 2  + k2(x2 - x I )  + c2(X2 - X,) = F2 

Fig. 2.2 
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Alternatively we could have used co-ordinates y, and y2 in which case the appro- 
priate functions are 

and the virtual work is 

6W = F,6y, + F&YI + Y2) = VI + F2PYI + F26Y2 
Application of Lagrange‘s equation leads this time to 

m& + m,(y, + j 2 )  + k,yl + c i I  = fi  + 4 

mz(Y1 + Y2) + + c2Y2 = 4 
Note that in the first case the kinetic energy has no term which involves products 

like (iicjj whereas in the second case it does. The reverse is true for the potential 
energy regarding terms like 9;qj. Therefore the coupling of co-ordinates depends on 
the choice of co-ordinates and de-coupling in the kinetic energy does not imply that 
de-coupling occurs in the potential energy. It can be proved, however, that there 
exists a set of co-ordinates which leads to uncoupled co-ordinates in both the 
kinetic energy and the potential energy; these are known as principal co-ordinates. 

2.5 Kinetic energy 

The kinetic energy of a system is 

T = L miif = 1 ( i l T [ m ] ( i )  2 

where 
T 

(1) = (XI X 2  . * X 3 N )  

and 
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We shall, in this section, use the notation ( ) to mean a column matrix and [ ] to indicate a 
square matrix. Thus with 

T 
(X) = (XI X, . . . X*) 

(4 = [A1(4) + (b) 

then we may write 

where 

and 

Hence we may write 

= 1(4>' [AIT [ml [AI (4) + (b)T[ml [AI (4) + [ml (b) (2.24) 

Note that use has been made of the fact that [m] is symmetrical. This fact also means that 
[ A I ~ [ ~ ] [ A I  is symmetrical. 

T = T, + TI  + To 

2 

Let us write the kinetic energy as 

where T,, the first term of equation (2.24), is a quadratic in q and does not contain time 
explicitly. TI is linear in q and the coefficients contain time explicitly. To contains time but 
is independent of q. If the system is scleronomic with no moving constraints or moving axes 
then TI = 0 and To = 0. 

T2 has the form 

- T = a, 4,G$ a, - a,, = m  

T, = I c a i 2  

2 r l  2 

and in some cases terms like q& are absent and T, reduces to 

2 ,  " 
Here the co-ordinates are said to be orthogonal with respect to the kinetic energy. 
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2.6 Conservation laws 
We shall now consider systems for which the forces are only those derivable from a 
position-dependent potential so that Lagrange’s equations are of the form 

A(%) dt aS, - (2) = 0 

A(%) = 0 

If a co-ordinate does not appear explicitly in the Lagrangian but only occurs as its time 
derivative then 

dt %I 

Therefore 

aq1 
- a = constant 

In this case q, is said to be a cyclic or ignorable co-ordinate. 
Consider now a group of particles such that the forces depend only on the relative posi- 

tions and motion between the particles. If we choose Cartesian co-ordinates relative to an 
arbitrary set of axes which are drifting in the x direction relative to an inertial set of axes as 
seen in Fig. 2.3, the Lagrangian is 

1 -2 1 t = N 1  
91 = E z 112, (X+ XI? + y; + z, - V(x, y, z,) 

I =  I 

Because X does not appear explicitly and is therefore ignorable 
r = N  2% = crn,.(X + x,) = constant ax I = I  

If X+ 0 then 

(2.25) 
r = N  . 
, = I  
I: m,x, = constant 

Fig. 2.3 
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This may be interpreted as consistent with the Lagrangian being independent of the position 
in space of the axes and this also leads to the linear momentum in the arbitrary x direction 
being constant or conserved. 

Consider now the same system but this time referred to an arbitrary set of cylindrical co- 
ordinates. This time we shall superimpose a rotational drift of r of the axes about the z axis, 
see Fig. 2.4. Now the Lagrangian is 

x = z -L r, (e, + r)* + if + Z ,  - v(rl,el,zl) 
1 2  m [ 2 .  .'I 

Because y is a cyclic co-ordinate 

az 2 '  -,- = Cm,r,(O, + y) = constant 
aY I 

If we now consider y to tend to zero then 

-,- ax = ~ m l r ~ b l  = constant 
aY 1 

(2.26) 

This implies that the conservation of the moment of momentum about the z axis is associ- 
ated with the independence of aXld r  to a change in angular position of the axes. 

Both the above show that aXla4 is related to a momentum or moment of momentum. We 
now define aZ/aq, = p, to be the generalized momentum, the dimensions of which will 
depend on the choice of generalized co-ordinate. 

Consider the total time differential of the Lagrangian 

- a =  x p q J + x T a  a x -  6% +-  ap (2.27) 
dt  J aqJ J a% at 

d ax 
If all the generalized forces, QJ, are zero then Lagrange's equation is 

- (  dt as, )-(?)=O 
Substitution into equation (2.27) gives 

Fig. 2.4 
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ax ax 

Thus 

d 
d t  at 

- .) = -- ax 
i 

and if the Lagrangian does not depend explicitly on time then 

- z = constant 
i as, 

(2.28) 

(2.29) 

Under these conditions Z = T - V = T,(qjqj) - V(qj). Now 

1 
2 i i  & = - Z Z a , q i & ,  a, = aji 

so 

because aii = aii. 
We can now write 

so that 

T$qj - 9; = 2T2 - (T, - V) 

= T , + V = T + V  

= E  
the total energy. 

From equation (2.29) we see that the quantity conserved when there are (a) no general- 
ized forces and (b) the Lagrangian does not contain time explicitly is the total energy. Thus 
conservation of energy is a direct consequence of the Lagrangian being independent of time. 
This is often referred to as symmetry in time because time could in fact be reversed without 
affecting the equations. Similarly we have seen that symmetry with respect to displacement 
in space yields the conservation of momentum theorems. 

2.7 Hamilton's equations 

The quantity between the parentheses in equation (2.28) is known as the Hamiltonian H 

or in terms of momenta 

(2.30) 

(2.3 1) 
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Since q can be expressed in terms o f p  the Hamiltonian may be considered to be a function 
of generalized momenta, co-ordinates and time, that is H = H(qjfi t). The differential of H 
is 

From equation (2.32) 

(2.32) 

(2.33) 

By definition a € / ~ j  = pi and from Lagrange's equations we have 

Therefore, substituting into equation (2.33) the first and fourth terms cancel leaving 

(2.34) a+ 
Jat 

dH = Xqj%. - X:qdq, - - dt 

Comparing the coefficients of the differentials in equations (2.32) and (2.34) we have 

(2.35) 

and 

Equations (2 .35)  are called Hamilton S canonical equations. They constitute a set of 2n 
first-order equations in place of a set of n second-order equations defined by Lagrange's 
equations. 

It is instructive to consider a system with a single degree of freedom with a moving foun- 
dation as shown in Fig. 2.5. First we shall use the absolute motion of the mass as the 
generalized co-ordinate. 

2 
0 

rnx *' k 
2 2 

z = - - - ( x - x )  

Fig. 2.5 
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Therefore x = plm. From equation (2.32) 

In this case it is easy to see that 

(2.36) 

H is the total energy but it is not conserved because xn is a 
function of time and hence so is H. Energy is being fed in and out of the system by what- 
ever forces are driving the foundation. 

Using y as the generalized co-ordinate we obtain 

2 k 2  
3L = “(y 2 + Xo) - I Y  

- m ( y  + X2) = p az 
a j  
- -  

Therefore y = @/m) - X, and 

(2.37) 

Taking specific values for x, and x (and hence y )  it is readily shown that the numerical 
value of the Lagrangian is the same in both cases whereas the value of the Hamiltonian is 
different, in this example by the amount pxo. 

If  we choose io to be constant then time does not appear explicitly in the second case; 
therefore H i s  conserved but it is not the total energy. Rewriting equation (2.37) in terms of 
y and x, we get 

(2.38) 

where the term in parentheses is the total energy as seen from the moving foundation and 
the last term is a constant providing, of course, that Xo is a constant. 

We have seen that choosing different co-ordinates changes the value of the Hamilton- 
ian and also affects conservation properties, but the value of the Lagrangian remains 
unaltered. However, the equations of motion are identical whichever form of Z or H is 
used. 

2.8 Rotating frame of reference and velocity-dependent potentials 

In all the applications of Lagrange’s equations given so far the kinetic energy has always 
been written strictly relative to an inertial set of axes. Before dealing with moving axes in 
general we shall consider the case of axes rotating at a constant speed relative to a fixed axis. 
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Assume that in Fig. 2.6 the XYZ axes are inertial and the xyz axes are rotating at a con- 
stant speed R about the 2 axis. The position vector relative to the inertial axes is r and rel- 
ative to the rotating axes is p. 

Now 

r = p  

and 

i =  d p + R x p  at 

1 T = - ( -  m 2 at b . b  at + (QW * (QXP) + 2 x  b * (QXP) 

The kinetic energy for a particle is 

1 . *  T = -mr.r  2 
or 

(2.39) 

Let fl X p = A, a vector function of position, so the kinetic energy may be written 

m " +  ! ! A 2  + m 2 . A  
T =-(-) 2 at 2 at 

and the Lagrangian is 

p =-  - - - - A  - m - - A  - V (2.39a) 

The first term is the kinetic energy as seen from the rotating axes. The second term relates 
to a position-dependent potential function 0 = - A2/2. The third term is the negative of a 
velocitydependent potential energy U. V is the conventional potential energy assumed to 
depend only on the relative positions of the masses and therefore unaffected by the choice 
of reference axes 

m(ap)i  2 at ( Y 2  at * )  

E = - - -  m 0 + U  - V  (2.39b) mo2 2 at ( 1 

Fig. 2.6 
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It is interesting to note that for a charged particle, of mass m and charge 4, moving in a 
magnetic field B = V X A, where A is the magnetic vector potential, and an electric field 
E = - VO - y, where 0 is a scalar potential, the Lagrangian can be shown to be 

(2.40) 

This has a similar form to equation (2.39b). 
From equation (2.40) the generalized momentum is 

p.r = mi + qAx 
From equation (2.40b) the generalized momentum is 

px = mi + d, = m i  + m(o,,z - cozy) 

In neither of these expressions for generalized momentum is the momentum that as seen 
fiom the reference frame. In the electromagnetic situation the extra momentum is often 
attributed to the momentum of the field. In the purely mechanical problem the momentum 
is the same as that referenced to a coincident inertial frame. However, it must be noted that 
the xyz frame is rotating so the time rate of change of momentum will be different to that 
in the inertial frame. 

EXAMPLE 

An important example of a rotating co-ordinate frame is when the axes are 
attached to the Earth. Let us consider a special case for axes with origin at the cen- 
tre of the Earth, as shown in Fig. 2.7 The z axis is inclined by an angle a to the 
rotational axis and the x axis initially intersects the equator. Also we will consider 
only small movements about the point where the zaxis intersects the surface. The 
general form for the Lagrangian of a particle is 

m a p  aP m e 
2 at at 2 at 

r = - - . - + - ( 5 ) ~ p ) . ( 5 ) ~ p > + m - - ( ( R ~ p )  - v 
= T  - u, - u, - v 

with 
5) = oxi + o,,j + o,k and p = xi + y j  + zk 

A = $2 x p  = i(0,z - 0,y)  + j ( y x  - 0.J) + k(0,y - 0,x) 

and 

m-*A ap =&(o,z - cozy) + my(o,x - 0s) + mz(o,y - OJ) 
at 

= -u, 

at 3 
where x = dx etc. the velocities as seen from the moving axes. 

When Lagrange's equations are applied to these functions U, gives rise to 
position-dependent fictitious forces and U, to velocity and position-dependent 
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Fig. 2.7 

fictitious forces. Writing U = U, + U, we can evaluate the x component of the 
fictitious force from 

- (  d au )-(g=-PfI 
d t  z 
m(o,z  - oz,v) - m(o;x - o,r)o, - m(o,y - o,,x)(-o,) - m(yo,  - zo,)= -e, 

-e, = m[(& + o,)x - oro,,y - o,o,z] + 2m(w,i - or$) 

-efv = m [ ( q  + o,)y - o,.o,z - o,o,x] + 2m(o$ - oj) 

or 

Similarly 

2 

2 2 

2 2 -efz = m[(o ,  + O,)Z - O,O,X - O,O,,y] + 2m(ox9 - a$) 

For small motion in a tangent plane parallel to the x y  plane we have 2 = 0 and 
z =  R,sincex<.zandy<.z,thus 

-ef, = m[ -o,o,R] - 2mo$ (0 
-ef, =m[-w,o,R] + 2mw,x (ii) 

-efi = m(o:, + oi)R - 2m(o, i  - a,,.;) (iii) 
We shall consider two cases: 

Case 1, where the x y z  axes remain fixed to the Earth: 
o, = 0 o, = - o g i n a  and o, = O,COSQ 

Equations (i) to (iii) are now 
-& = -2mo,cosay  

-ef, = m(o:sina cosa R )  + 2mwecosa X 
-efz = m(o:sin a)R - 2mo,sina X 2 
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from which we see that there are fictitious Coriolis forces related to x and y and 
also some position-dependent fictitious centrifugal forces. The latter are usually 
absorbed in the modified gravitational field strength. In practical terms the 
value of g is reduced by some 0.3% and a plumb line is displaced by about 0.1". 

Case 2, where the xyz axes rotate about the z axis by angle 0: 

or = q s i n  a sins, a, = -mesin a cos0 and a, = a,cosa + dr 
We see that if 8 = --W,COS~ then a, = 0, so the Coriolis terms in equations (i) 

and (ii) disappear. Motion in the tangent plane is now the same as that in a plane 
fixed to  a non-rotating Earth. 

2.9 Moving co-ordinates 
In this section we shall consider the situation in which the co-ordinate system moves with a 
group of particles. These axes will be translating and rotating relative to an inertial set of 
axes. The absolute position vector will be the sum of the position vector of a reference point 
to the origin plus the position vector relative to the moving axes. Thus, referring to Fig. 2.8, 
5 = R + p, so the kinetic energy will be 

. .  
T = Cq ., -4 = x; (R.R + pJ.pJ + 2RjJ) 

J J 

Denoting EmJ = m, the total mass, 
J 

T = mR.R + cipJ*pJ = R-cm,.pJ (2.41) 

Here the dot above the variables signifies differentiation with respect to time as seen from 
the inertial set of axes. In the following arguments the dot will refer to scalar differentiation. 

If we choose the reference point to be the centre of mass then the third term will vanish. 
The first term on the right hand side of equation (2.41) will be termed To and is the kinetic 
energy of a single particle of mass m located at the centre of mass. The second term will be 

J 
2 

J 

Fig. 2.8 
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denoted by TG and is the kinetic energy due to motion relative to the centre of mass, but still 
as seen fiom the inertial axes. 

The position vector R can be expressed in the moving co-ordinate system xyz, the specific 
components being x,, yo and z,, 

R = x,i + y o j  + zok 

By the rules for differentiation with respect to rotating axes 

so 

+ j o j  + x,k + (c13/zo - ozyo)i+ (oso - ogo)j 

T G  =x:[iji + y j j  + xjk + ( y z j  - o&i+ (a,+ - ogj)j 

The Lagrangian is 

(2.42) 

(2.43) 

(2 .4)  
. . .  

= To(X0 yo 20 io90 Zo) & ( X j Y j  Zj Xi yi 5) - v 
Let the linear momentum of the system bep. Then the resultant force F acting on the sys- 

tem is 

d d 
dtn, dt, 

F =  - p =  - p + o X p  

and the component in the x direction is 

In this case the momenta are generalized momenta so we may write 

(2.45) 

If Lagrange’s equations are applied to the Lagrangian, equation (2.44), exactly the same 
equations are formed, so it follows that in this case the contents of the last term are equiva- 
lent to dPlax,. 

If the system is a rigid body with the xyz axes aligned with the principal axes then the 
kinetic energy of the body for motion relative to the centre of mass T, is 

1 2 1 2 1 2  

2 2 TG = -40, + -i-Zvo.v + -AmZ , see section 4.5 
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The modified form of Lagrange’s equation for angular motion 

yields 

(2.46) 

(2.47) 

In this equation a, is treated as a generalized velocity but there is not an equivalent gener- 
alized co-ordinate. This, and the two similar ones in eo,, and e,,, form the well-known 
Euler’s equations for the rotation of rigid bodies in space. 

For flexible bodies TG is treated in the usual way, noting that it is not a function of x,,, x,, 
etc., but still involves a. 

2.10 Non-holonomic systems 

In the preceding part of this chapter we have always assumed that the constraints are holo- 
nomic. This usually means that it is possible to write down the Lagrangian such that the 
number of generalized co-ordinates is equal to the number of degrees of freedom. There are 
situations where a constraint can only be written in terms of velocities or differentials. 

One often-quoted case is the problem of a wheel rolling without slip on an inclined plane 
(see Fig. 2.9). 

Assuming that the wheel remains normal to the plane we can write the Lagrangian as 

1 .2 -2 1 .2  

2 2 2 = -m(x + y )  + -1~0 + L z ~ + ~  - mg(sinay + cosar) 

The equation of constraint may be written 

ds = r d 0  

dx = ds siny = r siny d0 
dy = ds cosy = r cosy d0 

or as 

We now introduce the concept of the Lugrange undetermined multipliers h. Notice that 
each of the constraint equations may be written in the form Cujkdqj = 0; this is similar in 
form to the expression for virtual work. Multiplication by hk does not affect the equality but 
the dimensions of h, are such that each term has the dimensions of work. A modified virtual 
work expression can be formed by adding all such sums to the existing expression for vir- 
tual work. So 6W = 6W + C(h,Cu,,dqj); this means that extra generalized forces will be 
formed and thus included in the resulting Lagrange equations. 

Applying this scheme to the above constraint equations gives 

h,dx - h,(r siny)dra = 0 
hzdy - h,(r cosy)der = 0 

The only term in the virtual work expression is that due to the couple C applied to the shaft, 
so 6W = C 60. Adding the constraint equation gives 

Applying Lagrange’s equations to ‘E for q = x, y ,  0 and w in turn yields 
6W = C 60 + h,& + h,dy - [h,(r siny) + h,(r cosy)]dnr 



(a) 

(b) 

(4 

Fig. 2.9 (a), (b) and (c) 
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m i  = h,  
my + mg sina = h2 
Ii 0 = C - [h,(r s h y )  + h,(r cosy)] 
I2G = o  

X = r s i n y  ii 
y = r c o s y i i  

In addition we still have the constraint equations 

Simple substitution will eliminate hi and h, from the equations. 
From a free-body diagram approach it is easy to see that 

h,  = Fsiny 
I., = Fcosy 

and 

[h,(rsiny) + h?(rcosy)] = -Fr 

The use of Lagrange multipliers is not restricted to non-holonomic constraints, they may 
be used with holonomic constraints; if the force of constraint is required. For example, in 
this case we could have included h,dz = 0 to the virtual work expression as a result of the 
motion being confined to the xy plane. (It is assumed that gravity is sufficient to maintain 
this condition.) The equation of motion in the z direction is 

-mg cosa = h, 

It is seen here that -1, corresponds to the normal force between the wheel and the plane. 
However, non-holonomic systems are in most cases best treated by free-body diagram 

methods and therefore we shall not pursue this topic any further. (See Appendix 2 for meth- 
ods suitable for non-holonomic systems.) 

2.1 1 

The force is said to be impulsive when the duration of the force is so short that the change 
in the position co-ordinates is negligible during the application of the force. The variation 
in any body forces can be neglected but contact forces, whether elastic or not, are regarded 
as external. The Lagrangian will thus be represented by the kinetic energy only and by the 
definition of short duration aTldq will also be negligible. So we write 

Lagrange's equations for impulsive forces 

-(-) d aT = Q, 
dt aqj 

Integrating over the time of the impulse T gives 

A - - Qidt (3 - fo' (2.48) 

or 
A [generalized momentum] = generalized impulse 

A 4  = J, 
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EXAMPLE 
The two uniform equal iods shown in Fig. 2.10 are pinned at B and are moving to  
the right at  a speed V. End A strikes a rigid stop. Determine the motion of the two 
bodies immediately after the impact. Assume that there are no friction losses, no 
residual vibration and that the impact process is elastic. 

The kinetic energy is given by 

m .2 m -2 I . 2  I . 2  

2 2 2 2 
The virtual work done by the impact force at A is 

T = - X I  + -x2  + -e, + - e 2  

6W = F(-dr, + ado , )  

and the constraint equation for the velocity of point B is 

X, + a i ,  = i2 - ab2 (ia) 
or, in differential form, 

(a) 

Fig. 2.10 (a) and (b) 
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dx,  - dx, + ado, + ad€+ = 0 (ib) 
There are two ways of using the constraint equation: one is to use it to elimi- 

nate one of the variables in Tand the other is to make use of Lagrange multipli- 
ers. Neither has any great advantage over the other; we shall choose the latter. 
Thus the extra terms to be added to the virtual work expression are 

h[dx, - dx, + ado, + ad€+] 

Thus the effective virtual work expression is 

6W’ = F(-dr,  + ado, )  + h[dx,  - dx, + ado, + ad€+] 

Applying the Lagrange equations for impulsive forces 

m(xl - V) = -JFdt + Jhdt 
?(X2 - V) = - J h d t  
101 = J a F d t  + Jahdt 
re, = Jahdt 

There are six unknowns but only five equations (including the equation of con- 
straint, equation (i)). We still need to include the fact that the impact is elastic. This 
means that at the impact point the displacement-time curve must be symmetrical 
about its centre, in this case about the time when point A is momentarily at  rest. 
The implication of this is that, at the point of contact, the speed of approach is 
equal to the speed of recession. It is also consistent with the notion of reversibil- 
ity or time symmetry. 

Our final equation is then 

V = ae, - X, (vi) 
Alternatively we may use conservation of energy. Equating the kinetic energies 
before and after the impact and multiplying through by 2 gives 

(vi a) 
It can be demonstrated that using this equation in place of equation (vi) gives the 
same result. From a free-body diagram approach it can be seen that h is the 
impulsive force at B. 

We can eliminate the impulses from equations (ii) to (v). One way is to add 
equation (iii) times ‘a‘ to equation (v) to give 

(vii) 
Also by adding 3 times equation (iii) to the sum of equations (ii), (iv) and (v) we 
obtain 

(viii) 

This equation may be obtained by using conservation of moment of momentum 
for the whole system about the impact point and equation (v i )  by the conserva- 
tion of momentum for the lower link about the hinge B. 

Equations (ia), (vi), (vii) and (viii) form a set of four linear simultaneous equa- 
tions in the unknown velocities x,, x2, 6, and 4. These may be solved by any of the 
standard methods. 

. 2  . 2  
mV2 = mi:  + mi:  + re, + 10, 

m( i ,  - v ) a  + re2 = o 

m(i ,  - V)a + 3m(i2 - Y)a  + 14, + 16, = o 
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3.1 Introduction 

In the previous chapters the equations of motion have been presented as differential equa- 
tions. In this chapter we shall express the equations in the form of stationary values of a time 
integral. The idea of zero variation of a quantity was seen in the method of virtual work and 
extended to dynamics by means of D’Alembert’s principle. It has long been considered that 
nature works so as to minimize some quantity often called action. One of the first statements 
was made by Maupertuis in 1744. The most commonly used form is that devised by Sir 
William Rowan Hamilton around 1834. 

Hamilton’s principle could be considered to be a basic statement of mechanics, especially 
as it has wide applications in other areas of physics, but we shall develop the principle 
directly from Newtonian laws. For the case with conservative forces the principle states that 
the time integral of the Lagrangian is stationary with respect to variations in the ‘path’ in 
configuration space. That is, the correct displacement-time relationships give a minimum 
(or maximum) value of the integral. 

In the usual notation 

61;. dt = 0 

or 

61 = 0 

where 

This integral is sometimes referred to as the action integral. There are several different inte- 
grals which are also known as action integrals. 

The calculus of variations has an interesting history with many applications but we shall 
develop only the techniques necessary for the problem in hand. 
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3.2 Derivation of Hamilton‘s principle 
Consider a single particle acted upon by non-conservative forces F,, F,, Fk and conservative 
forcesf;, J ,  fc which are derivable from a position-dependent potential function. Referring to 
Fig. 3.1 we see that, with p designating momentum, in the x direction 

d 
F, +f; = z (PI) 

with similar expressions for the y and z directions. 
For a system having N particles D’ Alembert’s principle gives 

F, + f; - dt (p,) 6xl = 0, 1 5 i S 3N ?( d l  
1; ?( Fl +f; - ;il d l  ( P I )  64 dt = 0 

?( 1 Fl% dt - 1 - w t  - [Pl6X11 + 1 (PI) ; (6x1) dt ) = 0 

1: (E F16xl - 6V +E p 1 6 x , )  dt = 0 

We may now integrate this expression over the time interval t, to t2 

Nowf; = - av and the third term can be integrated by parts. So interchanging the order of 
summation and integration and then integrating the third term we obtain 

3x1 

t2  I2 d 
(3.3) 

t 2  t2 av 
tl t, axl tl tl 

We now impose a restriction on the variation such that it is zero at the extreme points t, and 
tz; therefore the third term in the above equation vanishes. Reversing the order of summa- 
tion and integration again, equation (3.3) becomes 

(3.4) 
I 1 

Let us assume that the momentum is a function ofvelocity but not necessarily a lin- 
ear one. With reference to Fig. 3.2 if P is the resultant force acting on a particle then 
by definition 

Fig. 3.1 
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* 

Fig. 3.2 

dPi pi = - 
dt 

so the work done over an elemental displacement is 

dp. P,&; = -' dr, = xidpi dt 
The kinetic energy of the particle is equal to the work done, so 

T = $xidpi 

Let the complementary kinetic energy, or co-kinetic energy, be defmed by 

Tc = Jp,& 

It follows that 6P = pi6& so substitution into equation (3.4) leads to 

1; (6 (T*  - V) +? F j 6 x j )  dt = 0 

or 

" (T* - V) dt = - "(ZF;Sx,)dt = 6 1'2(-W)dt 
ti I t ,  I t ,  ; t, 

1: 

(3.5) 

where 6 W is the virtual work done by non-conservative forces. This is Hamilton 's principle. 
If momentum is a linear function of velocity then T* = T. It is seen in section 3.4 that the 
quantity (T* - V) is in fact the Lagrangian. 

If all the forces are derivable from potential functions then Hamilton's principle reduces 
to 

6 X d t = O  (3.6) 

All the comments made in the previous chapter regarding generalized cosrdinates apply 
equally well here so that Z is independent of the co-ordinate system. 
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3.3 Application of Hamilton's principle 

In order to establish a general method for seeking a stationary value of the action integral 
we shall consider the simple madspring system with a single degree of freedom shown in 
Fig. 3.3. Figure 3.4 shows a plot ofx versus t between two arbitrary times. The solid line is 
the actual plot, or path, and the dashed line is a varied path. The difference between the two 
paths is 6x. This is made equal to Eq(t), where q is an arbitrary kc t ion  of time except that 
it is zero at the extremes. The factor E is such that when it equals zero the two paths coin- 
cide. We can establish the conditions for a stationary value of the integral I by setting dlldc 
= 0 andthenputtingE=O. 

From Fig. 3.4 we see that 

6 (x + dx)  = 6x + d(6x) 

Therefore 6 (dr) = d(6x) and dividing by dt gives 
d x d  
dt dt 

6 -  = - (6x) 

mi2 kx2 

(3 -7) 

For the problem at hand the Lagrangian is 

E = - - -  
2 2 

Fig. 3.4 
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Thus the integral to be minimized is 

The varied integral with x replaced by f = x + ~q is 

+  ET^)' - - k (x+  ~ q ) i )  dt 
2 

Therefore 

Integrating the first term in the integral by parts gives 

By the definition of q the first term vanishes on account of q being zero at t ,  and at t2, so 
P 12 

Now q is an arbitrary fimction of time and can be chosen to be zero except for time = t 
when it is non-zero. This means that the term in parentheses must be zero for any value of 
t ,  that is 

m , f + k x =  0 (3 -9) 

A quicker method, now that the exact meaning of variation is known, is as follows 

k t 2  

S I t ,  (;X2 - T ~ 2 )  dr = 0 

Making use of equation (3.7), equation (3.10) becomes 

P 

Again, integrating by parts, 

h 6x 1; - It:mi 6x dt - kx 6x dt = 0 
4 

(3.10) 
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or 

- It:(m2 + la) 6x dt = 0 

and because 6r is arbitrary it follows that 
&+la= 0 (3.1 1 )  

3.4 Lagrange's equations derived from Hamilton's principle 

For a system having n degrees of freedom the Lagrangian can be expressed in terms of the 
generalized co-ordinates, the generalized velocities and time, that is P = P (qi ,qi ,t). Thus 
with 

t 2  

tl 
I = /  X d t  (3.12) 

we have 

Note that there is no partial differentiation with respect to time since the variation applies 
only to the co-ordinates and their derivatives. Because the variations are arbitrary we can 
consider the case for all q, to be zero except for q,. Thus 

Integrating the second term by parts gives 

Because 6qj = 0 at t ,  and at t2 

Owing to the arbitrary nature of 6qj we have 

(3.13) 

These are Lagrange's equations for conservative systems. It should be noted that i = T* 
- V because, with reference to Fig. 3.2, it is the variation of co-kinetic energy which is 
related to the momentum. But, as already stated, when the momentum is a linear function 
of velocity the co-kinetic energy T* = T ,  the kinetic energy. The use of co-kinetic energy 
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becomes important when particle speeds approach that of light and the non-linearity 
becomes apparent. 

3.5 Illustrative example 

One of the areas in which Hamilton's principle is useful is that of continuous media where 
the number of degrees of freedom is infinite. In particular it is helpful in complex problems 
for which approximate solutions are sought, because approximations in energy terms are 
often easier to see than they are in compatibility requirements. 
As an example we shall look at wave motion in long strings under tension. The free-body 

diagram approach requires assumptions to be made in order that a simple equation of motion 
is generated; whilst the same is true for this treatment the implications of the assumptions 
are clearer. 

Figure 3.5 shows a string of finite length. We assume that the stretching of the string is neg- 
ligible and that no energy is stored owing to bending. We further assume that the tension T in 
the string remains constant. This can be arranged by having a pre-tensioned constant-force 
spring at one end and assuming that aulax is small. In practice the elasticity of the string and 
its supports is such that for small deviations the tension remains sensibly constant. 

We need an expression for the potential energy of the string in a deformed state. If the 
string is deflected from the straight line then point B will move to the left. Thus the neg- 
ative of the work done by the tensile force at B will be the change in potential energy of 
the system. 

The length of the deformed string is 

If we assume that the slope dddx is small then 

1 i = O  

For small deflections s Q L so the upper limit can be taken as L. Thus r. 

Fig. 3.5 
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The potential energy is -T (-s) = TS giving 

(3.14) 

If  u is also a function of time then duldx will be replaced by duldx. 
If p is the density and a is the cross-sectional area of the string then the kinetic energy is 

The Lagrangian is 

‘ E =  J- 
r = 0 

According to Hamilton’s principle we need to find the conditions so that 

t2 r =  L 

6 1 ,  t r = O  -f [: (g)2-L(2)2]  2 ax 
d x d t = O  

Carrying out the variation 

t2  + = L  

s , , . L o [  p ‘ ( & ) 6 ( $ )  - T ( $ ) 6 ( $ ) p d 2 = O  

(3.15) 

(3.16) 

(3.17) 

(3.18) 

To keep the process as clear as possible we will consider the two terms separately. For the 
first term the order of integration is reversed and then the time integral will be integrated by 
Parts 

because 6u = 0 at t, and t2. The second term in equation (3.18) is 

Integrating by parts gives 

(3.19) 
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(3.20) 

The first term is zero provided that the emU are passive, that is no energy is being fed into 
the string after motion has been initiated. This means that either 6u = 0 or du/dx = 0 at 
each end. The specification of the problem indicated that 6u = 0 but any condition that 
makes energy transfer zero at the extremes excludes the first term. 

Combining equations (3.19) and (3.20) and substituting into equation (3.18) yields 

and because 6u is arbitrary the integrand must s u m  to zero so that finally 
- aZu 

pa,,,  - T s  (3.21) 

This is the well-known wave equation for strings. It is readily obtained from free-body dia- 
gram methods but this approach is much easier to modify if other effects, such as that of 
bending stiffness of the wire, are to be considered. Extra energy terms can be added to the 
above treatment without the need to rework the whole problem. This fact will be exploited 
in Chapter 6 which discusses wave motion in more detail. 



Rigid Body Motion in Three Dimensions 

4.1 Introduction 
A rigid body is an idealization of a solid object for which no change in volume or shape is 
permissible. This means that the separation between any two particles of the body remains 
constant. 

If we know the positions of three non-colinear points, i, j and k, then the position of the 
body in space is defined. However, there are three equations of constraint of the form 
Ir, - r, 1 = constant so the number of degrees of freedom is 3 x 3 - 3 = 6.  

4.2 Rotation 
If the line joining any two points changes its orientation in space then the body has suffered 
a rotation. If no rotation is taking place then all particles will be moving along parallel paths. 
If the paths are straight then the motion is described as rectilinear translation and if not the 
motion is curvilinear translation. From the definitions it is clear that a body can move along 
a circular path but there need be no rotation of the body. 

It follows that for any pure translational motion there is no relative motion between indi- 
vidual particles. Conversely any relative motion must be due to some rotation. 

The rotation of a rigid body can be described in terms of the motion of points on a sphere 
of radius a centred on some arbitrary reference point, say i. The body, shown in Fig. 4.1, is 
now reorientated so that the pointsj and k are moved, by any means, to positionsj’ and k‘. 
The arc of the great circle joiningj and k will be the same length as the arc joiningj’ and 
k’, by definition of a rigid body. Next we construct the great circle through points j andj’ 
and another through the points k and k’. We now draw great circles which are the perpen- 
dicular bisectors of a r c s j ’  and kk‘. These two circles intersect at point N. The figure is 
now completed by drawing the four great circles through N and the pointsj, k,j’ and k’ 
respectively. 

By the definition of the perpendicular bisector arc Nj = arc Nj‘ and arc Nk = arc Nk‘. Also 
arcjk = arcj‘k’ and thus it follows that the spherical triangle kNj is congruent with k’Nj’. 
Now the angle kNj = k’Nj’ and the angle kNj’ is common; therefore angle kNk‘ =j’Nj’. 

With i as reference the line iN is an axis of rotation. Therefore we have proved that 
any displacement relative to i can be represented by a rotation of angle jNj’ about the 
line IN. 
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Fig. 4.1 

In general we can state that any change in orientation can be achieved by a rotation 
about a single axis through any chosen reference point. 

This is often referred to as Euler S theorem. 
It also follows directly that 

any displacement of a rigid body can be obtained as the sum of the rectilinear dis- 
placement of some arbitraly point plus a rotation about an axis through that point. 

This is known as Chasles S theorem. 
Note that the reference point is arbitrary so that the direction of the displacement is vari- 

able but the direction of the axis of rotation is constant. Indeed the reference point can be 
chosen such that the direction of the displacement is the same as the axis of rotation; this is 
known as screw motion. 

The validity of the last statement can be justified by reference to Fig. 4.2(a). The body is 
moved by a rotation of 8 about the OA axis and then translated along 00‘. Alternatively the 
translation can be made first followed by a rotation about the O’A’ axis, which is parallel to 
OA. OA and 00’ define a plane and the view along arrow A is shown in Fig. 4.2(b). The 
point N is located such that ON = ON’ and angle ONO’ is also 8. This rotation will move 
the point 0 to 0” and a translation along the O’A’ axis will bring the body into the desired 
position. 

It is worth noting that if the displacement of all particles is planar such that the rotation 
axis is normal to that plane then any change in position can be achieved by a rotation about 
a fixed axis. The case of pure translation may be thought of as a rotation about an axis at 
infinity. 

The definition of rotation does not require the location of the axis to be specified - only 
its direction is needed. If the reference point is a fixed point then the axis of rotation can be 
regarded as a fixed axis through that point and points lying on the axis will not be displaced. 

A corollary of Euler’s theorem is that a rotation about axis 1 followed by a rotation about 
axis 2 can be replaced by a single rotation about axis 3. It should be noted that if the order 



(b) 

Fig. 4.2 (a) and (b) 

Fig. 4.3 
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of the first two rotations is interchanged then the equivalent third rotation will be different. 
Finite rotations do not obey the law of vector addition; this is discussed in detail in Chapter 
8 which discusses robot dynamics. The fact is easily demonstrated by reference to Fig. 4.3, 
depicting three consecutive 90" rotations. The line OP is rotated 90' about the x axis to OQ, 
then the y axis to OR and then the z axis back to OP. Alternatively the line OP is rotated 
about the z axis to OS, then they axis to OQ and finally about the x axis to OT. Clearly the 
results are different. 

4.3 Angular velocity 

Consider a small rotation d0 about some axis Oz as shown in Fig. 4.4. A point on a sphere 
of radius a will move a distance 

ds = bd0 (4.1) 

S = be = a s i n 0 0  (4.2) 

The direction of the velocity is AA' which is normal to the plane containing the radius 
vector and the axis of rotation. The angle 0 is the angle between the radius vector and the 
axis of rotation so by definition of the vector product of two vectors 

(4.3) 

Dividing by dt, the time interval, gives 

w = ie = 0k x a 

where k is the unit vector in the z direction. 
In general 

w = o x r  (4.4) 

where o is the angular velocity vector of magnitude 6 in a direction parallel to the axis of 
rotation and r is the position vector. 

We still require to show that the angular velocity vector obeys the parallelogram law of 
vector addition. For small displacements on the surface of the sphere the surface tends to a 
flat surface. Thus the geometry is Euclidean and the order of the rotations may be reversed 

Fig. 4.4 
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(4.5) 

(4-6) 

ds = del X a + de2 X (a + ds) = (de, + de2) x a 

v = (0, + 0 2 )  x a 

neglecting second-order terms. Dividing equation (4.5) by dt gives 

Thus, although finite rotations do not obey the law of vector addition angular velocities do. 
The velocity of point P on a rigid body may be written 

v p  = v A  + 0 x r p / A  (4.7) 
where V, is the velocity of some reference point, o is the angular velocity and rp /A  is the 
position vector of P relative to A. 

4.4 Kinetics of a rigid body 
From equation (1.48) we have that the linear momentum is the total mass times the velocity 
of the centre of mass. This is true whether the body is rigid or not, so equation (1.50) is valid 

(4.8) 
d .  C F, = ;T; (rnrG) = mi', 

Let us now consider the general space motion of a rigid body. From equation (1.53) the 
moment of momentum about some origin 0 is 

L,  = C r, x m,i; (4.9) 

(4.10) 

From Fig. 4.5 

r~ = rA + PI 
where p, is the position vector of particle i relative to A. For a rigid body equation (4.7) gives 

(4.11) r; = VA + 0, x p ,  
Substituting equations (4.10) and (4.1 1) into equation (4.9) gives 

LO = x (rA + P I )  x m~ ('A + 0 x P I )  
= rA x mvA + rA x (0 x C m,pJ + (C  m,pJ x vA 

+ c PI x (0 x mIPJ (4.12) 

Fig. 4.5 
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From the definition of the centre of mass 

(Pf + rA) = mrG 

or 

mipi = (rG - rA) (4.13) 

Using equation (4.13), equation (4.12) becomes 

Lo = r, X w X (mrG - mr,) + mr, X V ,  + p, X (a X m,p,) (4.14) 

The first case is when the point A is fixed and is used as the origin, that is r, = 0 and v, 
This equation is cumbersome but it takes a simpler form for two special cases. 

= 0. Equation (4.14) is now 

Lo = P, x (0 x m,pJ (4.15) 

The second case is when G is the reference point, that is A coincides with G. Equation 

(4.16) 

This may be hrther simplified if we take the origin to be coincident with G, in which case 

(4.14) is now 

Lo = rG x mv, + C p, X (o X m,p,) 

Lo = L, = C p, x (o x m,p,) (4.17) 

Note that p is measured from the reference point, that is the fixed point A in the first case 
and the centre of mass for the second. 

From equation (1.53) we have that the moment of the external forces about the chosen 
origin 0 is equal to the time rate of change of the moment of momentum, or 

d 
M, = - 

dt Lo 
(4.18) 

Let us first consider the case of rotation about a fixed axis of symmetry, say the z axis, so 
w = o,k and p = xi + yj  + zk. Equation (4.15) is now 

Lo = C. (x,i + y, j  + z,k) x (o,m,xJ’ - o,m,y , i )  
= C q m ,  (x:  + y : ) k  = m,b: o ,k  (4.19) 

where b, = , (x:  + y:) is the distance of the particle from the z axis and remains constant 
as the body rotates. The term Z m, b: is a constant of the body known as the moment of iner- 
tia about the z axis and is given the symbol I,. Equation 4.19 can now be written 

Lo = Izozk (4.20) 

Equation (4.18) gives 
Mo = I&k (4.2 1) 

The differentiation is easy because the moment of inertia is a constant and shows that the 
moment of forces about 0 depends on the angular acceleration &:. 

We now return to the case of rotation about the fixed point. If we express the moment of 
inertia in terms of the fixed co-ordinate system it will no longer be constant because the ori- 
entation of the body will be changing with time. To avoid the difficulty of coping with a vari- 
able moment of inertia it is convenient to choose a set of moving axes such that the moment 
of inertia is constant. For the general case these axes will be fixed to the body but for the 
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common situation where the body has an axis of symmetry we can use any set of axes for 
which one axis coincides with the axis of symmetry. 

This means that equation (4.18) will become (see equation (1.13)) 

(4.22) 

where oR is the angular velocity of the moving axes. 

4.5 Moment of inertia 

In the previous section we found an expression for the moment of inertia about a fixed axis. 
Clearly different axes will produce different values for this quantity. We need to look at the 
formula for moment of momentum in some detail. For rotation about a fixed point we have, 
by equation (4.15), 

LO = PI X (0 X mipi) (4.15) 

Using the expansion formula for a triple vector product 

(4.23) 

From the appendix on tensors and dyadics we recognize that the second term is the product 
of the vector o and a dyadic. The first term can be put in the same form by introducing the 
unit dyadic 1 so that equation (4.23) becomes 

(4.24) 
The terms in the square brackets are the moment of inertia. This quantity is not a scalar or 
a vector but a dyadic, or second-order tensor, and is given the symbol I so that equation 
(4.24) reads 

L o =  0.1 (4.25) 
It is quite possible to expand the terms in the square brackets in equation (4.24) but we 

believe that it is clearer to obtain the expression for the components of Lo directly by form- 
ing the dot product of equation (4.24) or (4.25) with the unit vectors 

Lo = o. [ 1 ( C  m,p') - C mipipi)] 

L ,  = L . i  = 0 . l . i  0 
= a. [ (C m,p,?) i - C m,p,x, ] 

Because p, = x, i  + y , j  + z ,k  it follows that p, . i = x,. 
Expanding equation (4.26) we have 

Lx = a. C [ m, (xf + yf + z : )  i - m,x:i - m,y,x,j  - m,z ,x ,k]  
= a. C [ m, (yf + z : )  i - m , y , ~ , j  - m,z,x,k ] 
= ~ , C r n ,  ( y :  + z : )  - ~ ~ C m , y , x ,  - ~ ~ C m , z , x ,  
= OJ, + O,I, + OJr2 

where 
I, = Z m, ( y :  + z : ) ,  moment of inertia about x axis 
In, = - Z mlylx l ,  product moment of inertia, = I ,  
I,; = - C m,z, x, , product moment of inertia, = I, 

Some texts define the product moment of inertia as the negative of the above. 

(4.26) 

(4.27) 



62 Rigid body motion in three dimensions 

Similar expressions for L,, and Lz can be found and the results written as a matrix equa- 
tion as follows 

or, in short form, 

(Lo) = [101(4 (4.28) 
where the symmetric square matrix [Io] is the moment of inertia matrix with respect to 
point 0. 

An alternative method of obtaining the moment of inertia matrix is to use the 
vector-matrix algebra shown in Appendix 1. 

Equation (4.15), 

Lo = - C pi X (m,p, X o) 
may be written 

Lo = (4' (Lo) = (4' I [ P I :  imp]: 1 (4 
0 -z, Yl 

(4.29) 

Carrying out the matrix multiplication yields the same result as equation (4.28). 
The co-ordinate axes have been chosen arbitrarily so we now ask the question whether 

there are any preferred axes. In general the moment of momentum vector will not be paral- 
lel to the angular velocity vector. It can be seen that if a body is spinning about an axis of 
symmetry then L will be parallel to a. Can this also be true for the general case? 

We seek a vector o such that 

Lo = ho 

where h is a scalar constant. Thus 

(4' [Zol(w) = h(4' (0) 

or 

c Vol - [ l l  = 0 (4.30) 

This is the classical eigenvalue problem in which h is an eigenvalue and the corresponding 
(0) is an eigenvector; note that for the eigenvector it is only the direction which is impor- 
tant - the magnitude is arbitrary. Writing equation (4.30) in f i l l  gives 

(4.3 1) 

From the theory of homogeneous linear equations a non-trivial result is obtained when the 
determinant of the square matrix is zero. This leads to a cubic in h and therefore there are 
three roots (h,, h2 and h3) and three corresponding vectors (o,, w2 and w3). Each pair of 
eigenvalues and eigenvectors satisfy equation (4.30). There are, therefore, three equations 
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(4.32) 
(4.33) 
(4.34) 

If we premultiply equation (4.32) by ( ~ 0 ~ ) ~  and subtract equation (4.33) premultiplied by 
(al)T the resulting scalar equation is 

(%IT [Iol(al)  - (adT [101(a2) - hl(a2)T (01) + h2(aJT ( 0 2 )  = 0 
Because [Zo] is symmetrical the second term is the transpose of the first and as they are 
scalar they cancel. Since the product of the two vectors is independent of the order of 
multiplication we are left with 

(h2 - hl)(a2)T(@l) = 0 (4.35) 

and if h,  does not equal h2 then a2 is orthogonal to al. The same argument is true for the 
other two pairings of vectors, which means that the eigenvectors form an orthogonal set of 
axes. 

From equation (4.32) it follows that if (a2)T (al) = 0 then 

(4.36) 

and similarly for the other two equations. 

that is 
We shall now construct a square matrix such that the columns are the three eigenvectors, 

[AI = [(ai) (02) ((%)I (4.37) 

We now use this matrix to transform the moment of inertia matrix to give 

[Zml = [AIT [ZoI[Al (4.38) 

A typical element of the transformed matrix is (a,)T [Zo] (a,) which, by virtue of the 
orthogonality condition in equation (4.36), is zero if i does not equalj. The matrix is there- 
fore diagonal with the diagonal elements equal to (a,)T [Zo] (a,). 

We have shown that for any body and for any arbitrary reference point there exists a set 
of axes for which the moment of inertia matrix is diagonal. These axes are called the prin- 
cipal axes and the elements of the matrix are the principal moments of inertia. These axes 
are unique except for the degenerate case when two of the eigenvalues are identical. From 
equation (4.35) if h, = h2 then the eigenvectors are not unique but they must both be 
orthogonal to A,. With this proviso they may be chosen at will. 

An example is that for a right circular cylinder the axis of symmetry is a principal axis; 
clearly any pair of axes normal to the axis of symmetry will be a principal axis. Although it 
is not obvious a prism of square cross-section will satisfy the same criteria as the previous 
case. In fact any prism whose cross-section is a regular polygon has degenerate principal 
axes. Another useful property of symmetry is that for a body which has a plane of 
symmetry one principal axis will be normal to that plane. 

The above argument is true for any reference point in the body. We now seek a relationship 
between the moment of inertia about some arbitrary point 0 and that about the centre of mass 
G .  If R is the position vector of G relative to 0 then the position of mass m, can be written p, 
= R + p,, where p is the position relative to G. Substitution into equation (4.24) yields 

Io  = C m, [ (R2 + pf + 2R p , )  1 - (RR + p[p,  + Rp, + p , R ) ]  
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Remembering that C m, p, = 0 we obtain 

I, = m(R21 - RR) + E m , ( p : l  - p,pf )  = rn(R21 - RR) + I, (4.39) 
It should be pointed out that the principal axes of I, are only parallel to those of I, if the shift 
of the reference point is along one of the principal axes. However, if we wish to find just the 
component about a given axis, say the x axis, by forming i I, . i = I,, = m (R2 - xz)  + 
IGr = m ('y2 + z') + Z,,, we see that it becomes the familiar parallel axes theorem. 

The other well-known theorem relating to moment of inertia is the perpendicular axes 
theorem. For a thin lamina one principal axis is normal to the plane of the lamina, the other 
two being in the plane. 

Taking the axis normal to the plane as the z axis, the moment of inertia with reference to 
point 0 is 

2 2  2 I,, = 2 m, (x, + y , )  = E m,x, + 2 m , k  

which, for a lamina, gives 

If the x and y axes are chosen to be the principal axes 

I, = I ,  + z; 

4.6 Euler's equation for rigid body motion 
For the rotation of a rigid body about a fixed point equation (4.22) tells us that 

aL0 M ,  = - + OR x Lo 
at 

(4.39a) 

(4.39b) 

(4.22) 

and because I, is symmetrical equation (4.25) reads 
L o =  0.1, = I,-0 (4.25) 

In the general case for which the axes are fixed to the body w R  = 0. Hence combining 
equations (4.22) and (4.25) gives 

a (1, ' 0) + 0 x (lo 'O) = I,&+ 0 x (1,*0) 
at 

M,  = (4.40) 

Here we have replaced 8 9  by & without ambiguity because 
at 

am . 
+ 0 x a = - = 0  d o  a 0  

d t  at at 

I, = I,ii + 12jj + I3kk 

- _ _ -  

Choosing principal axes the moment of inertia dyadic (see Appendix 1) may be written 

or 

I ,  0 0 

0 0 z3 
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I ,  0 0 0, 0 -0, o,, I ,  0 0 

which, on carrying out the multiplication, yields 

M, = - (I, - I,) wvo; 
M,. = 1 2 4  - ( 1 3  - I , )  o;o, 
M; = - ( I ,  - Z,) ora,. 

(4.41) 

These last three equation are Eider's equations. 
For the case where the z axis is an axis of symmetry I ,  = I ,  the x and y axes can take any 

position, provided that the set is still orthogonal. Equation (4.40) can be now modified to 
take account of the angular velocity of the axes being 

Hence we have 
am 
at M, = I ,  -r - R,Z,W,. + R,Z3o; 

am ,, 
at M,  = I,- - R,Z30; + R,Z,o, (4.42) 

ao, 
M; = 1 3 -  - R,Z,o, + R,Z*O, 

at 
It is still imperative that from the moving axes the moment of inertia is constant. Either the 
axes are fixed to the body or at least one axis is an axis of symmetry. The latter implies that 
if one axis is an axis of symmetry then the other two are equal. If the body has point sym- 
metry then all principal moments of inertia are equal. Notice also that we have reverted to 
the partial differential for the first term on the right hand side of equation (4.42). 

The above analysis has been developed on the assumption that the reference point is fixed. 
However, the same formulation is applicable if the reference point is the centre of mass and 
is independent of any motion of the centre of mass. We need, of course, to evaluate the 
moment of inertia with respect to the centre of mass. 

4.7 Kinetic energy of a rigid body 

The total kinetic energy is H E m,d and for a rigid body the velocity relative to the reference 
point is v, = o X r,. Therefore the kinetic energy is 

1 
2 

T = - C m , ( o  x r , ) .  (a x r , )  (4.43) 

1 
2 

= - C m i ( r ,  x o)-(r, X o) 
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In vector-matrix notation 
1 
2 

T = - E mi {[r]' (a)}T [r]' (a) 

Now the transpose of a cross-matrix (see Appendix 1) is its negative so 
1 
2 

T = - - c [r]' [TI' (0) 

(4.44) 

(4.45) 

Also from Appendix 1 

[r]" [TIX = (r) ( r y  - r2 [ 11 

and therefore equation (4.45) is 

(4.46) 
2 

The term in the large parentheses is recognized as the moment of inertia matrix [ I] .  Thus 
1 

T = 5 ( a l T [ I I  (0) 

If the rotation is about the z axis equation (4.43) reduces to 
1 
2 

T = - ~ r n , ( a ~ x j  - w , y i ) 2  

1 
2 = - a 2 C m i ( x 2  + y 2 )  

1 2  = - a  I, 
2 

(4.47) 

(4.48) 

Since the choice of axis was arbitrary it follows that the kinetic energy is half the angular 
speed squared times the moment of inertia about the axis of rotation. If we write o = me, 
where 

(4.49) e = li + m j  + nk 
is the unit vector in the direction of rotation, equation (4.47) gives 

(4.50) 

(4.5 1 )  

where Z is the moment of inertia about the axis of rotation. 
With ( e )  = ( 1  m n)T and noting that [ I ]  is symmetrical, equation (4.50) expands to 

? I ~  + m21w + n2zZz + 21m1, + 2mn1, + 2n11, (4.52) 
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If principal axes are chosen then 

r‘l, + m21, + n’~, = I (4.53) 

The equation 2 + F + 7 = 1 is the equation for an ellipsoid where a, b and c are the 
semi-major and semi-minor axes. Equation (4.52) can be put in this form by taking the 
magnitude of a radius vector in the direction of e as 1/,I as shown in Fig. 4.6. It is seen 
that 1 = x , I ,  m = y , I  and n = z,I. 

2 
x2 u’ z 

Fig. 4.6 

Substituting into equation (4.53) and dividing through by I gives 

~ , x ’  + 19’ + ~,z’ = 1 (4.54) 

This is the equation of an ellipsoid with semi-axes l/,I,, 1/\12 and l/,13. This is known as 
the moment of inertia ellipsoid. 

4.8 Torque-free motion of a rigid body 

From equation (4.18) we have that if the torque Mo is zero then the moment of momentum 
is constant. We shall take, as before, the reference point to be either a fixed point or the cen- 
tre of mass. The only difference is that the appropriate moment of inertia has to be used. 
Therefore 

Lo = Io * o = constant (4.55) 

Since for a rigid body there can be no internal energy losses and because there is no exter- 
nal work being done the kinetic energy will be constant 

1 1 
2 2 

(4.56) 

We can write 2T = 1 0 1  [Lo/  cos a, where a is the acute angle between the angular velocity 
vector and the moment of momentum vector. Therefore 

o* l o .  o = - o. Lo = constant T = -  

101  cos a = 2T/ILoI = constant (4.57) 
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2T cosa = 
lLol 14 (4.58) 

This says that the component of the angular velocity parallel to the fixed moment of momen- 
tum is constant. Another way of expressing this result is to note that the tip of the angular 
velocity vector lies on a fixed plane normal to the moment of momentum vector known as 
the invariable plane. 

We choose the body axes to correspond to the principal axes so that 

Lo = I I q i  + 12wyj  + 13w,k (4.59) 

and 

2T = I ,o: + I,of + Z303 (4.60) 

Also 

o = o,i + o,j + ozk (4.61) 

The angle between the moment of momentum vector and the z axis, p, can be found from 

130; 
cos p = - 

P o l  

and the angle between the angular velocity vector and the z axis, y, is found from 

0; 
cosy = - 14 

(4.62) 

(4.63) 

Without loss of generality we can choose the sense of the z axis such that oz is positive, in 
which case a, j3 and y are all acute angles. 

Expanding equation (4.62) 
1 3 0 :  

, (z;o,; + I:o6 + I j o i )  

40: 
\ (Zio.; + 1jo.t + 1: 0;) 

cos p = 

Expanding equation (4.63) and multiplying the numerator and denominator by I3 

cosy = (4.65) 

Now if Z3 is the largest principal moment of inertia cos p > cos y and therefore y > p. I f  I3 is 
the smallest principal moment of inertia p > y. 

Expanding equation (4.58) 
I ,  w.: + z,o; + I3 0; 

I Lo II 4 cos a = (4.66) 

From the expressions for cos a, cos p and cos y it can be shown that a can never be the 
largest of the three angles. 

The justification of the last statement is dependent on the fact that not all combinations of 
the principal moment of inertia are possible. The perpendicular axes theorem as given in 
equation (4.39b) shows that for a lamina in the xy plane I: = I, + I, and as one principal 
axis is in the z direction we have for the principal axes that I3 = I ,  + I*. Thus 

(4.67) 
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Figure 4.7 shows a plot of IJ13 against 12/Z3 on which equation (4.67) plots as line ab. For 
a long slender rod with its axis along the 3 axis I3 = 0 and I ,  = I2 and is shown as point e. 
It is easy to show that rods in they and x axes respectively are represented by points a and 
b. Lines ac and bd are for laminae in the yz and xz planes. The region enclosed by cabd is 
the allowable region for moments of inertia. 

Figure 4.8 shows the relative positions of the L, o and k vectors for the case where I3 is 
smallest so that p > y. Because o can never be the largest of the three angles the arrange- 
ment must be as shown. The three vectors need not be coplanar. Figure 4.9 is similar to Fig. 
4.8 except that Z3 is the largest so that y > p. If Z3 has the intermediate value then either pat- 
tern is possible. 

An interesting geometrical interpretation was put forward by Poinsot in 1834. He discov- 
ered that the body could be represented by its inertia ellipsoid touching the invariable plane 
and with its centroid at a fixed distance from the plane as shown in Fig. 4.10. 

From the discussion leading to equation (4.54) the radius vector p = 1/,Z but as 2T = 
lo2 we have that p = a/, (2T). 

Fig. 4.7 Moment of inertia bounds 

Fig. 4.8 
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Fig. 4.10 Poinsot’s ellipsoid 

The equation for the ellipsoid can be written as 
2 I , x2  + z2y + z3z2 = f 

where f is a scalar function;f = 1 is the case for the inertia ellipsoid. The gradient off gives 
a vector which points in the direction of the normal to the surface at given value of x, y, z, 
and hence a. Thus 

grad f = 21,xi + 2Z2yj + 21,zk 

Now 

x = l p = -  ZO = - O x  

gradf = - 2 L  

\ (2T)  \ (2T)  
etc., so 

\ (2T) 
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This means that the normal to the ellipsoid surface at the contact point is parallel to L and 
is therefore normal to the invariable plane. 

All the above is consistent for a body with the shape of the inertia ellipsoid rolling with- 
out slip on an invariable plane. The curve that the o vector traces out on the body is known 
as the polhode and the curve which it traces out on the invariable plane is known as the her- 
polhode. 

For a torque-free symmetrical body with I ,  = I, we have, from Euler’s equation (4.41), 
that Z3az = constant. Equation (4.62) shows that f3 is constant and thus the inclination of the 
moment of inertia ellipsoid is constant. Since the distance of the origin of the ellipsoid to 
the invariable plane is constant it follows that the radius vector from the origin to the con- 
tact point is also constant and therefore the magnitude of the angular velocity is constant, its 
direction of course not being constant. From equation (4.58) we see that a is constant and 
from equation (4.63) y is constant. By forming the triple scalar product of Lo, o and k it is 
seen that the value is zero when I ,  = I, showing that for this case the three vectors are 
coplanar. 

Referring to Figs 4.8 and 4.9 it is clear that because all three angles are constant and the 
three vectors are coplanar both the polhode and the herpolhode are circles. These circles can 
be thought of as the bases of cones centred on the origin, the one with semi-angle a being 
the space cone and the one with semi-angle y the body cone. When I ,  is the smallest the out- 
side of the body cone rolls on the outside of the space cone, see Fig. 4.1 1, and when I3 is 
the greatest the inside of the body cone rolls on the outside of the space cone, as shown in 
Fig. 4.12. 

For any given starting values of o the constants Lo and Tare determined and from these 
the constant angles a, p and y can be found. The precession of the body axis around the 
moment of momentum vector can be evaluated from the kinematics of the space and body 
cones as shown in Figs 4.1 1 and 4.12. 

Letting the precession rate about the Lo axis be CI we can write expressions for the veloc- 
ity of the point c b  as 

+- -+ 
a x (ocb) = a x (ocb) 

13 < ( 1 2  = 1, I 

Fig. 4.11 13C (I, = I,) 
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4 ' (4  = 1,) 

Fig. 4.12 I ,  > ( I ,  = I , )  

Equating the magnitudes, since directions are the same, gives 

-+ + 
101 lOC,l sin y = Inl lOC,l sin p 

giving 

lLol 
\ [If (0: + 0.3 1 

2 sin y \ (0, + 0.: 1 
101 

I.nl = IwI- - - IO1 

- 0; \ (of/"; + 0.:/0: + z;/z;) (4.68) 

Now the angular velocity of the body cone relative to the precessing plane containing Lo, 

- lLol - - -  
I, 

w and k vectors is w - a. The component in the I directon is 

(0 - a) .  k = 0; - Is21 cos p 

cos p - lLol 
- a z - -  

1, 
= 0; - Z30JZ, 

= 0; (1 - Z3/1, )  

This is the rotation of the body relative to the frame containing the Lo, o and k vectors. 
Therefore its negative will be the precession of the w axis relative to the body, and thus 

(4.68a) .n& = Oz(Z3/Z, - 1) 

4.9 Stability of torque-free motion 

The investigation of the stability of torque-free motion can be carried out using standard 
mathematical techniques, but the semi-graphical method which follows gives all the essen- 
tial information. 
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For torque-free motion the moment of momentum vector is constant, as is the kinetic 
energy. The square of the magnitude of the moment of momentum expressed in terms of its 
components along the principal axes is 

(4.69) L2 = Lf + L ;  + L ;  

and as L ,  = I , o ,  etc. the kinetic energy T can be written 
L :  L ;  L ;  

2T = - + - + - (4.70) 

Taking L , ,  L ,  and L,  as the co-ordinate axes equation (4.69) plots as a sphere of radius L 
and equation (4.70) plots as an ellipsoid with semi-axes \ (2TZl), , (2T12) and \ (2T13) and 
is known as Binet S ellipsoid. 

For convenience we choose the principal axes such that I ,  > I2 > I , .  By multiplying equa- 
tion (4.69) by I ,  we have 

4 I2 I3 

(4.7 1) 

which is less than L2, since I ,  is the smallest moment of inertia. Therefore , (2T4 ) < L. Sim- 
ilarly by multiplying equation (4.69) by 1, we show that , (2T13) > L. This means that the 
sphere always intersects the ellipsoid. 

Figures 4.13 to 4.16 show the form of the surfaces for various conditions. The intersec- 
tion curve is the locus of L relative to the body axes as only points on this curve will satisfy 
both equation (4.69) and equation (4.70). The curve is obviously closed so it follows that 
the curve traced out by the angular velocity vector will also be closed, that is the polhode is 
a closed curve. We cannot say the same for the herpolhode but it can be seen that this falls 
within a fixed band. 

In Fig. 4.13 the moment of momentum vector is close to the 1 axis (smallest moment of 
inertia) and the curve tends to a circle, so for a rigid body this is a stable condition. In Fig. 
4.16 the moment of momentum vector is close to the 3 axis (the maximum moment of iner- 
tia) and again the intersection curve tends to a circle and stable motion. When the moment 
of momentum vector is close to the 2 axis (the intermediate moment of inertia) the inter- 
section curve is long and wanders over a large portion of the surface, as shown in Figs 4.14 
and 4.15. This indicates an unstable motion. 

So far we have considered the body to be rigid and torque free. In the case of a non-rigid 
body any small amount of flexing will dissipate energy whilst the moment of momentum 

2 I1 2 I ,  7 

12 I3 
2TIl = L ,  + - L2 + - L ;  

Fig. 4.13 Binet diagram: ellipsoid principal axes 1,2,3, sphere radius 1 . 1  
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Fig. 4.14 Binet diagram: ellipsoid principal axes I ,2.3, sphere radius 1.95 

Fig. 4.15 Binet diagram: ellipsoid principal axes 1,2,3, sphere radius 2.05 

Fig. 4.16 Binet diagram: ellipsoid principal axes 3,2,1, sphere radius 2.6 

remains constant. A similar situation occurs when tidal effects are present. In both cases it 
is assumed that variations from the nominal shape are small. 

The general effect is that Binet’s ellipsoid will slowly shrink. For the case of rotation 
about the 3 axis the intersection curve reduces and the motion remains stable, but in the case 
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of rotation close to the 1 axis the intersection curve will slowly increase in size leading to 
an unstable condition. Rotation close to the 2 axis is unstable under all conditions. 

4.10 Euler's angles 

The previous sections have been concerned, for the most part, with setting up the equa- 
tions of motion and looking at the properties of a rigid body. Some insight to the solution 
of these equations was gained by means of Poinsot's construction for the case of torque- 
free motion. 

The equations obtained involved the components of angular velocity and acceleration but 
they cannot be integrated to yield angles because the co-ordinate axes are changing in direc- 
tion so that finite rotation about any of the body axes has no meaning. 

We are now going to' express the angular velocity in terms of angles which can uniquely 
define the orientation of the body. Such a set are Euler's angles which we now define. 

Figure 4.17 shows a body rotating about a fixed point 0 (or its centre of mass). The XYZ 
axes are an inertial set with origin 0. The xyz axes are, in the general case, attached to the 
body. If the body has an axis of symmetry then this is chosen to be the z axis. Starting with 
XYZ and the xyz coincident we impose a rotation of 0 about the Z axis. There then follows 
a rotation of 0 about the new x axis (the x' axis) and finally we give a rotation of 0 about the 
final z axis. 

The angular velocity vector is 

0 = 0 K  + ei' + G k  (4.72) 

where K is the unit vector in the Z direction, i' is the unit vector in the x' direction and k is 
the unit vector in the z direction. 

From the figure we see that 

K = cos(8) k + sin(8)j" 
j"  = cos ( ~ ) j  + sin (w) i 
i' = cos (y ) i  - sin(w)j 

(4.73) 
(4.74) 
(4.75) 

Fig. 4.17 
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Thus 

K = cos (0) k + sin (e) cos ( v ) j  + sin (e) sin (w) i 

Writing 
(4.76) 

o = o,i + o,j + o,k (4.77) 

and substituting for K and i’ in equation (4.72) gives 

0, = ir sin e sin y + 6 cosy + o 
0, = 0 sine cosw - 0 s h y  + 0 

W, = rir COS e + O  + w  
(4.78) 

4.1 1 The symmetrical body 
The equation for angular velocity given in the previous section, even when used in con- 
junction with principal co-ordinates, leads to lengthy expressions when substituted into 
Euler’s equations or Lagrange’s equations. For the body whose axis of symmetry is the z 
axis (so that I, = IJ the xyz axes need not be rotated about the z axis. This means that for 
the axes w is zero. Nevertheless the body still has an angular velocity component \ir about 
the z axis. 

For the axes 

0, = a.4 + a,j + i l z k  

where 

(4.79) 

For the body 

0, = 0 
0,. = bsin 8 (4.80) 
a,= rircose + w 

These terms may now be inserted into the modified Euler’s equations (4.42) to give 

M, = 1,6 - (I, - I,) 2 sinocos e + I,& sine 

M,. = I ,  (dj sin e + biIcos e) - (z3 - I , )  0C)cos e - I@ (4.8 1) 

a 
at 

M; = z3-  COS^ + $1 

Alternatively we can write an expression for the kinetic energy 

and substituting the angular velocities from equation (4.80) gives 
1 1 1 
2 2 2 T = - I,$ + - 1,b2 sin2@ + - z3 (b cos e + w)’ (4.82) 
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It is interesting to note that use of equation (4.78) gives the same result because (of + of ) 
does not contain w. 

We now consider the classic case of the symmetric top in a gravitational field -gK. 
Figure 4.18 shows the relevant data. 

The torque is 

M, = mgh sin(8) i (4.83) 

and the potential energy 

V = mgh cos 8 (4.84) 

We choose to use Lagrange’s equations because they yield some first integrals in a con- 
venient form. The Lagrangian (P = T - V )  is 

1 1 1 
2 2 2 

P = - I,$ + - Z,02sin28 + - Z3 (91 cos 8 + \ir)’ - mgh cos e (4.85) 

from which we see that neither y~ nor 0 appear explicitly in the Lagrangian (they are cyclic 
or ignorable). Therefore we have two first integrals of the motion in the form of constant 
generalized momenta 

Z3 (\ir + 91 cos e) = constant (4.86) 
ax 

pw = & =  
and 

ax p,, = 7 = I ,  91 sin’ e + z3 <\ir + 0 cos e) cos e 
a0 

= I ,  0 sin’ e + pv  cos e = constant (4.87) 

Because time does not appear explicitly in the Lagrangian the energy, E, is constant 
1 1 1 
2 2 2 

E = - Z I e 2  + - Z,b2sin2B + - Z3 (91 cos 8 + \irf + rngh cos 8 (4.88) 

Fig. 4.18 
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Substituting equations (4.86) and (4.8.7) into (4.88) gives 

1 (P, - P , c o s ~ ) 2  P: E = - Z,e2 + + - + mgh cos8 (4.89) 
2 21, sin2 0 213 

Equation (4.89) can be rearranged in the following form 

1 
2 

E’ = - z,e2 + v (e) 

where the constant 

P: 
213 

E’ = E - - is the effective energyand (4.90) 

(Pa - P,cos8)2 v =  + mgh cos0 (4.91) 

which is a function of 8 only and may be considered to be a ‘pseudo’ potential energy. A 
typical plot of V‘ and E’ against 8 is shown in Fig. 4.19. In this case the shaded area is the 
region where 6’ is positive and is therefore the only possible values of 8 for the given initial 
conditions. It is seen that 8 oscillates between levels 0, and 8, whilst O3 is the value of 8 
where8 = 0. 

2Z, sin2 8 

We shall next generate Lagrange’s equation for 8 as the generalized co-ordinate 

d aP az 
d t (  %) -z=O 

The right hand side is zero because it is assumed that there is no friction or other forces 
applied; the effect of gravity is covered by the potential energy term. 

Thus 

Z,G - [ Z,S2 sin e cos 8 - Z3 (0 cos 8 + \it) (0 sin 8) + mgh sin 0 3 (4.92) 

Now from equation (4.86) 

z, (0 COS 8 + +) = z30, 

Spin speed 
= 5  Critical spin speed 

Fig. 4.19 
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Therefore 

Z,e = (-Z3azb + Z,S2 cos 8 + mgh ) sin 8 = 0 

-13azb + l lb2 cos8 + mgh = 0 

(4.93) 

(4.94) 

For 6 = 0 and 8 not equal to zero 

This expression is valid for 0 = 0 and is independent of 6 so it is true for the case of steady 
precession where 8 = 0. 

It is convenient to rewrite equation (4.94) as 
Z30, 1 mgh 1 2 

 COS^ = - I ,  (&T ( B )  (4.95) 

A plot of cos 8 against 11 S is shown in Fig. 4.20. The maximum value for cos 8 is found 
by equating the slope of the curve to zero, 

dcos 8 Z30, 2mgh 
- - - -  - - ($) = 0 (4.96) 
d (l /S) I ,  I, 

I10 = Z3 0; I 2mgh 

so the maximum occurs when 

(4.97) 

and the maximum value for cos 8 is 
Z:0f 

 COS^,, = - (4.98) 

For the special case of 8 = 0 the minimum value of 0, that will maintain stable motion with 
the axis vertical is 

4mghZ, 

W:,crit = \ ( 4 W I  ' 1:) (4.99) 

This condition is that of the 'sleeping top'. 
The motion of the z axis can be found by numerically integrating equation (4.93) in con- 

junction with equation (4.87) to generate 8 and 0 as functions of time. Some typical results 
are shown in Figs 4.2 1 to 4.24. If the initial precessional speed is that corresponding to those 
for steady precession then a circular motion is achieved. The time for one revolution about 

Fig. 4.20 
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Fig. 4.21 

Fig. 4.22 

the 2 axis for initial speeds not equal to a steady precessional speed varies slightly for small 
oscillations of 8 and when 0 is in the range 0 to a little above the slow precessional speed. 
A plot of the ratio of precessional time to time for steady precession against initial preces- 
sional speed is shown in Fig. 4.25. 

4.12 Forced precession 

So far we have considered the body to be free to respond to applied torques, or the absence 
of torque. A much simpler problem is to determine the torques required to give a prescribed 
motion to a body. We shall tackle a specific problem and find the solution by the direct appli- 
cation of first principles. 

Figure 4.26 depicts a rigid symmetrical wheel W which runs, with negligible friction, on 
axle A. The axle is freely pivoted to a block which is free to rotate about the vertical 2 axis. 
The wheel is rotating relative to the axle at a speed $ and the whole assembly is rotated 



Fig. 4.23 

Fig. 4.24 

Fig. 4.25 
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Fig. 4.26 

about the Z axis at a constant angular speed of 0. The moment of inertia of the wheel about 
its axis, the z axis, is Z3 and the moment of inertia of the wheel and axle about the y and x 
axes is I , .  

EXAMPLE 

Determine the torque which must be applied to the axle about the x axis so that 
the angle 8 is maintained constant. 
The angular velocity about the z axis is 

w + rtr COS e = aL (9  
and the angular velocity about the yaxis is $ sin 8. 

The moment of momentum vector is 

Lo = Z,rtr sin ( 8 ) j  + Z,a$ (ii) 
From Figs 4.26 and 4.27 we see that the change in the moment of momentum 
vector is 

Z30z sin 8 d0 i - Z,b sin 8 cos 8 d0 i = dL, 

Fig. 4.27 
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Thus 

(iii) 
a0 M, = - = ( I ~ o , ~  - 1,2 cose) sin (e) i 
dt 

but the torque about 0 is 

M, = (rnghsine + Q , ) i  (iv) 

(VI 
which is the required holding torque. Since there is no torque about the zaxis 5 0 ~  
= 5 (\ir + B cos 0) = constant. 

Equating torques from equations (iii) and (iv) gives 

Q, = (I,O,O - I$ case - rngh) sin e 

If Q, is zero we replicate equation (4.94). 

4.13 Epilogue 

The reader may well feel at this point that some new basic principle has been uncovered 
owing to the somewhat unexpected behaviour of rotating rigid bodies. We appear to come a 
long way from Newton’s laws of motion with notions such as the moment of inertia tensor 
and the need for three-dimensional rotating axes. The fact that torques do not just produce 
angular accelerations in a straightforward analogy with particle dynamics seems to require 
reconciliation. 

A simple example will serve to illustrate the origins of gyroscopic behaviour. Figure 4.28 
shows two identical satellites in circular orbit about a massive central body, the satellites 
being diametrically opposed. At the same instant the satellites receive impulses, AJ, normal 
to the p!ane of the orbit but in opposite senses. The effect of these impulses is to give each 
satellite a velocity of AJ/m in the same direction as the impulse. If the initial tangential 
velocity is I/ then the change in direction of the path d0 = M/(m V). This is the simple par- 
ticle dynamic solution. However, we can regard the system as originally rotating about the 

Fig. 4.28 
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z axis; the pair of impulses constitute a couple about the x axis yet the plane of rotation has 
rotated about they axis. 

We could solve the problem by equating the impulsive couple to the change in moment 
of momentum, that is 

M,dt = dL, 
M(2r)i = IZwZdO i 

AJ2r = (2rn:)(V/r) d0 
Thus 

giving 

dO = M/(mv) 

as expected. 



Dynamics of Vehicles 

5.1 Introduction 
A vehicle in this chapter is taken to be one which travels on land, in the air or in space. The pur- 
pose of the chapter is to bring out some of the characteristic dynamics in the particular domain. 

Satellite motion is typified by the motion of a small body about a large body under the 
action of a central force. However, for the two-body problem the restriction of one body 
being significantly smaller than the other is not restrictive because when considering the 
relative motion of two bodies the equations for reIative motion are the same as those per- 
taining to one small body in orbit about a large one. 

5.2 Gravitational potential 
Before considering the motion of bodies under gravity it is necessary to look at the distinc- 
tion between centre of mass and centre of gravity. If the gravitational field is uniform then 
the two centres will coincide. One important result which, so far, we have taken for granted 
is that for a uniform, spherical body the centre of gravity is at the geometric centre; as is the 
centre of mass. 

The quickest method of proving the last statement is to utilize the concept of gravitational 
potential. The change in potential is defined to be the negative of the work done by the force 
of gravity acting on a unit mass at some point P. Figure 5.1 shows a mass m and a unit mass 
at point P. Therefore the change in potential is 

dV = -Fdr = - - - dr i 3 
Thus 

Grn - + constant r 

Because ultimately only the differences in potential are required the additive constant can 
take any convenient value. In this case we shall make the constant equal to zero. 

Note that here V is the potential energy for a unit mass at the point P (or, the work done 
divided by the mass at P) and is therefore described as the gravitational potential at the 
point P. In many texts - 7 is called the gravitational potential. 
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Fig. 5.1 

If there are many masses then, since the potential is a scalar hnction of position, the total 
potential is 

v = -E% (5.3) 

From the definition of the potential the force in the r direction is 

dV a7 E = -  

and using the chain rule for differentiation 

F = - E  dX a V  dr  
(ax a7+TT-+S%) 

The unit vector in the r direction, e,, can be expressed in terms of the Cartesian unit vectors 
as 

e , = $ i + = j +  dY & k  
a7 

so 

t: ) r 

a V .  a V  ( ax ay 
4 = - - I  + - j  + - k - e  

or 

8 = -F.e, 

We define the gravitational field strength, g, as the force acting on a unit mass. Therefore g 
= F and thus 

g = - - i  + Ej + - k  (”,” ay aV az 1 
or, using the definition of the gradient of a scalar, 

- 
g = - V V  = -gradV (5.4) 

We shall now use the potential to find the field due to a thin hollow shell as shown in Fig. 
5.2. The density of the material is p, the shell thickness is t and its radius is R. The point P 
is situated a distance x from the centre of the shell and all points on the elemental annular 
ring are a distance r from P. 
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Fig. 5.2 

The mass of the annular ring is 

dm = p2xRsin0 R d0 t 

so the potential at P due to the ring is 

Gp2xR2t sin0 d0 dV = - r 

Now the mass of the whole shell is 

m = p4aR2t 
Therefore 

(5.5) 
Gm sin0 d0 

dV = - 
2r 

Using the cosine rule 

- 2Rx cos0 (5.6) y = x2 + R~ 

and differentiating gives 

(5.7) 

2 

2r d r  = 2Rx sin0 d0 

Substituting equation (5.7) into equation (5.5) gives 
Gm dr 

2xR 
dV = -- 

Integration produces 

v = -1 -dr Gm = - - [ r2  Gm - r , ]  
2xR 2xR 

(5.7a) 

ri 

For the case as shown r2 = x + R and r,  = x - R. Thus 

(5.8) Gm v = -- 
X 

which is identical to the result for a point mass of m at the centre. Applying equation (5.4) 
to equation (5.8) 
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Fig. 5.3 

Gm 
g = -  7 - i  (5.9) 

X 

If the point P is inside the shell we must re-examine the limits. By the definition of poten- 
tial r must be positive so, from Fig. 5.3, we have that 

r2 = R + x and r ,  = R - x  

which, when substituted into equation (5.7a), gives 

(5.10) 

which is constant for any point inside the shell. From equation (5.4) it follows that the field 
is zero. 

For a body comprising concentric spherical shells the field outside the body will be as if 
all the mass is concentrated at the centre. The field inside the body will be due only to the 
mass which is at a radius smaller than the distance of P from the centre, the outer shells mak- 
ing no contribution. If a body, of radius R, has a uniform density then the field at radius a 
(a  < R) will be 

Gm v = -- 
R 

(5.1 1) 

From the above arguments it can be seen that two spherically symmetric bodies will attract 

4 3 1  4 g = Gp-rca - = Gp-rca 
3 a2 3 

each other as if each was a point mass concentrated at their respective centres. 

5.3 The two-body problem 

Figure 5.4 shows two spherical bodies under the action of equal but opposite central 
forces F,, and 6,. The centre of mass lies along the line joining the centres at a position 
such that 

m,r, = m2r2 

With the separation of the bodies being s then we can define a mass p so that 

m,r, = m,r, = ps (5.12) 
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Fig. 5.4 

Now 

s = r l + y 2 = E + c I s =  m,  m2 -(&+A) 
Therefore 

(5.13) 

By conservation of momentum the centre of mass will be unaccelerated and this will 
initially be chosen as the origin. By conservation of moment of momentum we can fix a 
direction for one of the inertial axes. The moment of momentum vector can be written as 
two components, one along the line joining the centres and one normal to it. The component 
along the line will be due to the spin of the bodies and this will have no effect on the moment 
of momentum normal to the line. It follows that the motion of the two bodies will be con- 
fined to the plane which contains the line of centres and has L ,  as its normal. 

We can now write the equations of motion for the two masses in polar co-ordinates. 
Resolving radially we have 

(5.14) 

1 1 - + -  1 -  _ -  
P m, m2 

2 2  IF,^^ = m,w r, - mI?, = m2m r, - m2r2 

and taking moments about the centre of mass (C of M) gives 

0 = m,(r,& + 2 w i , )  = m2(r2& + 2wi2)  

or 

(5.15) o = 1 ~ ( m , r ~ w )  = z 1 g ( m 2 r : w )  
rl 

Substituting equation (5.12) into equation (5.14) gives 

lF121 = p 2 s  + CLj: (5.16) 

Now 
2 2 L ,  = m l r l  o + m2r2m 
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and again using equation 5.12 

L ,  = p r , o  + pr20 = p o ( r ,  + r2) 

(5.17) 

So we see that the motion is identical to that of a body of mass J.I at a distance s from a 
fixed body. The quantity J.I is known as the reduced mass. We shall now consider the central 
force problem because any two-mass system can be replaced by a single mass under the 
action of a central force. 

5.4 The central force problem 

Figure 5.5 shows a body of mass m at a distance r from the origin of a central force F(r) act- 
ing towards the origin. As already discussed the motion is in a plane so we can write the 
equations of motion directly in polar co-ordinates. 

2 = p s w  

In the radial direction 
.2 

-F(r) = mi: - mr0 (5.18) 

and normal to the radius 

O = mr0 i m2r8 

= L r Z  d (mr2,j) (5.19) 

Now mr26 = L is the moment of momentum and therefore constant. Eliminating 6 in equa- 
tion (5.18) leads to 

L2 -F(r) = mi: -7 

Dividing through by m we have 

mr 

-f(r) = i: -3 L9 (5.20) 

where L* is the moment of momentum per unit mass.f(r) is the central force per unit mass; 
let this force be Kr". Noting that i: = rdr /dr ,  integrating equation (5.20) with respect to r 
provides 

r 

-- Kr"+' - - - r2 + - - E  L9 (5.21) 
(n+l) 2 2: 

or, i f n  = - 1, 

Fig. 5.5 
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(5.21a) *2 L' 
2 2: 

-Klog(r) = L + - - E' 

where the constant E* has the dimensions of energy per unit mass. 
Equations (5.21) and (5.21a) may be written 

L2 1 Kr"" 
2 ((n+l) 2: 

L*2 1 

.2 
- r = - - + -  + E *  

or, withn = - 1, 

K log(r) + 2 + E* 
2r 

(5.22) 

The tenns in the large parentheses can be regarded as a pseudo potential 'V ' .  A plot of 'V' 
versus radius for various integer values of n is given in Fig. 5.6. It is seen that for certain 
values of n the curve exhibits a minimum and for others a maximum. Simple differentiation 
of 'V '  with respect to r reveals that for n > -3  the curve has a minimum and for n < -3 the 
curve has a maximum. The curves are drawn for a fixed value of moment of momentum and 
all (bar n = -3) show that for some range of values of E* there are two value of r for r' = 
0. In the cases where ' V' exhibits a minimum the value of r'* > 0 giving a real value for r' 
and thus stable motion occurs between the inner and outer bounds. The motion is said to be 
bounded. 

We now wish to know which values of n lead to closed orbits, that is orbits which repeat 
themselves after an integer number of orbits. A useful change of variable is r = 1 /u. 

Differentiation with respect to t gives 

-2 - =  r - (  
2 

= -'vy + E' 

dr - 1 du 6 
dt u2 de 

L' = r2i, = elu 

- - - _ -  

Now 
. 2  

Fig. 5.6 Constant chosen to give non-intersecting curves. 
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and therefore 

dr du - =--L 
dt de 

and 

Substitution of equation (5.23) into equation (5.20) gives 

or 

(5.23) 

(5.24) 

If u is constant, that is a circular orbit of inverse radius uo, then 

Let us now assume that u = uo + &(e) where E is small. 
Substitution into equation (5.24) leads to 

d2E K -(n+2) - + & = -(uo + E) -240 
de2 L'2 

Expanding the right hand side by the binomial theorem and neglecting terms above the first 
order gives 

= - ( n  + 2 ) ~  

so 
d2E 
de2 
- + (3 + n)E = 0 (5.25) 

This is the equation of simple harmonic motion (SHM) with the solution 

E = Eo cos(p0 + 0)  (5.26) 

where p = d(3 + n), 0 is a constant of integration and q, is a small amplitude. From this it 
is clear that n must be greater than -3 for sinusoidal error motion, which agrees with the 
result obtained from the pseudo potential. We may further argue that if the orbit is closed 
after one cycle then p must be an integer so that 

or 
2 n = p  - 3  

Some of the values are 
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p = l  n = - 2  
p = 2  n =  1 
p = 3  n =  6 
p = 4  n =  13 

Notice that the only negative value of n is -2, which is the inverse square law. The second 
value with n = 1 is Hooke’s law. 

If we let p be the ratio of two integers then a krther series of non-integer values of n are 
generated which indicate paths which close after a finite number of orbits. However, more 
detailed analysis carried out by Bertrand in 1873 leads to the conclusion that for large devi- 
ations from the circular orbit only the inverse square law and Hooke’s law generate closed 
orbits. Numerical integration of equation (5.24) supports this theory. See Figs 5.7(a) and 
5.7(b). 

Fig. 5.7 (a) Apsides stationary. (b) Apsides precess slowly. 

Astronomical observations have to date revealed only closed orbits other than deviations 
due to extra bodies or the effects of Einstein’s theory of relativity. This lends weight to the 
belief that the inverse square law of gravitational attraction is universal. 

5.5 Satellite motion 

We shall now consider the case for n = -2, that is the inverse square law of attraction. 
Equation (5.24) becomes 
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(5.27) K + u = -  d2u 
de2 L'2 

the solution to which is 

- 

K 
L'2 

u = A cos(e + 0)  + - 

- 1 = A case + - 
where A and 0 are constants. Choosing the constant 0 to be zero we have 

(5.28) 

The locus definition of a conic is that the distance from some point known as the focus is 
a fixed multiple of the distance of that point from a line called the directrix. From Fig. 5.8 
we have 

r = ed (5.29) 

K 
r L'2 

where the positive constant e is known as the eccentricity. Also 

rcos(8) + d = D (5.30) 

at 8 = 7112 

r = l = e D  (5.3 1) 

where the length 1 is the distance to a point called the latus rectum. Substituting equation 
(5.3 1) into equation (5.30) and rearranging gives 

i = + + 3 case 
or 

1 r = 1 + ecose (5.32) 

A t e  = 0 
(5.33) 

(5.34) 

y = y , = -  1 
l + e  

1 
1 - e  

and at 8 = x 
r = r 2 =  - 

Fig. 5.8 
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Since r is positive this expression is only valid for e < 1, 
So for e < 1 

(5.35) 

The type of conic is determined by the value of the eccentricity. If e = 0 then r,  = r2 = 
1 is the radius of a circle. If e = 1 then r2 goes to infinity and the curve is a parabola. For 0 
< e C 1 the curve is an ellipse and for e > 1 an hyperbola is generated. 

For an ellipse, as shown in Fig. 5.9, rI + r2 = 2a where a is the semi-major axis. From 
equation (5.35) 

(5.36) 1 a =  
1 - e2 

The length CF is 

21 
1 - e2 

rl  + r2 = 

- - -  I - a e  1 a - r , =  
1 - e 2  l + e  

We notice that if cos0 = -e equation (5.32) gives 
- ‘ = 1 - e 2  
r 

which by inspection of equation (5.36) shows that r = a. 
From Fig. 5.9 it follows that triangle FCB is a right-angled triangle with b the semi-minor 
axis. Therefore 

(5.37) 

I = -  L*2 (5.38) 

The energy equation for a unit mass in an inverse square law force field (see equation (5.2 1)) 
is 

b = J(a2 - e2a2> = aJ(1 - e’) 

Comparing equation (5.28) with equation (5.32) we see that 

K 

E * = - +  I: L*’ - - K (5.39) 
2 P r  

and when the radial component of the velocity is zero (i = 0) equation (5.39) becomes the 
quadratic 



96 Dynamics of vehicles 

2E.9 + 2Kr - L*2 = 0 
The values of r satisfying this equation are 

-2K f d(4K’ + 8 E i ” )  
4E’ 

For real roots 4d + 8 E i o 2  > 0 or 

r =  

(5.40) 
K’ E ’ -7 

2L 
The sum of the two roots, rl and r,, is 

(5.41) 

If both roots are positive, as they are for elliptic motion, then E* must be negative since K is 
a positive constant. For circular motion the roots are equal and thus 

K 
E 
7 r,  + r, = - 

* 
(5.42) E = -  K’ 

rl + r, = 2a = 21 = 2 ~ ’ ’  

7 2L 
Using equations (5.36) and (5.38) 

F7- 
Therefore equating expressions for the sum of the roots from equation (5.41) 

K - 2 ~ ’ ’  - -  
Z K(I - e21 

giving 
e 2 = 1 +  2L”E8 (5.43) 

K 2  
Figure 5.10 summarizes the relationship between eccentricity and energy. 

fact that the moment of momentum is constant we write 
Our next task is to find expressions involving time. Starting with equation (5.32) and the 

= 1 + ecos0 1 - 
Y 

and 
L’ = r’if = constant 

Fig. 5.10 
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Therefore 
d0 - L*(l + e cos0f 
dt 1 2  

t = t S ,  1 2  O d0 

_ -  

(5.44) 

Evaluation of this integral will give time as a function of angle after which equation (5.32) 
will furnish the radius. 

For elliptic orbits a graphical construction leads to a simple solution of the problem. In 
Fig. 5.1 1 a circle of radius a, the semi-major axis, is drawn centred at the centre of the 
ellipse. The line PQ is normal to a. The area FQA = area CQA - area CFQ 

(1 + e c o s ~ f  

1 a 
2 2 

2 
areaFQA = -0 - -aeasiner 

Now 

area FPA = A = area FQA X bla 

Thus the area swept out by the radius r is 

(5.45) ba 
2 

A = - ( 0  - esiner) 

Now 

(5.46) 

This is Kepler's second law of planetary motion, which states that the rate at which area is 
being swept by the radius vector is constant. Combining equations (5.45) and (5.46) and 
integrating gives 

L ' - 1 2 .  dA - - - r 0  = -  
2 2  dt 

L' ba --t = A = - ( 0  - esinca) 
2 2 

Using equations (5.37) and (5.38) 

Fig. 5.1 1 
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t = *(0 u30 - e sin@ 

From Fig. 5.1 1 we have 

(a sin0)blu = r sin0 

Substituting for r from equation (5.32) 

rsin0 - lsin0 sin0 = - - 
b b(l + e cos0) 

and finally, combining equations (5.36) and (5.37) gives 

l lb  = J(1 - e2) 

so that 

J(1 - e2)1sin0 
(1 + ecos0) 

sin0 = 

(5.47) 

(5.48) 

Equations (5.47) and (5.48) are sufficient to calculate t as a function of 0 but it is more accu- 
rate to use half-angle format. 

Let r = tan(W2) so that 
2r 

1 + T2 
sin0 = 

and 

Substituting into equation 5.48 gives 

J(1 - e32r 
(1 + r*) + e(l - r2) 

sin0 = 

2 tan(0/2) 
1 + tan2(0/2) 

sin0 = 

Comparison of equations (5.49) and (5.50) shows that 

Equation (5.47) may now be written as 

(5.49) 

(5.50) 

(5 .5 1) 

(5.52) 

which holds for 0 S e < 1. Figure 5.12 shows plots of 0 versus a non-dimensional time for 
various values of eccentricity. 
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Fig. 5.12 

From equation (5.47), since B ranges from 0 to 2n, the time for one orbit is 

T = -  2na3n (5.53) 
JK 

from which T2a a3; this is Kepler's third law. The first law was that the orbits of the planets 
about the Sun are ellipses. The second law is true for any central force problem whilst the 
first and third require that the law be an inverse square. The closure of the orbits also 
strongly supports the inverse square law as previously discussed. 

For a parabolic path, e = 1, we return to equation (5.44) and note that I = L'*/K so 
that 

1" e de 
t = ..Jb (1 + ecose)* 

Making a substitution of T = tan(W2) leads to 

Fig. 5.13 Time for parabolic and hyperbolic trajectories 
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c = -1 1" dr = ( d 2  + r3/6)- 1" 
YK 241 + r2) JK 

- - -[ JK 1" 7 1 tan(6/2) + 5tan3(e/2) l l  (5.54) 

For hyperbolic orbits, e > 1, the integration follows the method as above but is somewhat 
longer. The result of the integration is 

)] (5.55) 
1312 [ eJ(e2 - 1)sinO - l n (  J(e + I )  + { (e  - 1)tan(6/2) t =  

JK($ - 11312 1 + e cos 8 J(e + 1) - {(e - l)tan(6/2) 

Plots of equation (5.55), including equation (5.54), for different values of e are shown in Fig. 
5.13. 

5.6 Effects of oblateness 

In the previous section we considered the interaction of two objects each possessing spher- 
ical symmetry. The Earth is approximately an oblate spheroid such that the moment of iner- 
tia about the spin axis is greater than that about a diameter. This means that the resultant 
attractive force is not always directed towards the geometric centre so that there may be a 
component of force normal to the ideal orbital plane. 

For a satellite that is not spherical the centre of gravity will be slightly closer to the Earth 
than its centre of mass thereby causing the satellite's orientation to oscillate. 

We first consider a general group of particles, as shown in Fig. 5.14, and use equation 
(5.3) to find the gravitational potential at point P. From the figure R = p, + r, where p, is 
the position of mass m, from the centre of mass. Thus 

v = -  Gm, 
IR - PI1 

- - -  Gm, (5.56) 
J(R2 + P? - 2p;R) 

The binomial theorem gives 

Fig. 5.14 
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(5.57) 

so equation (5.56), assuming R + p, can be written 

As a further approximation we shall ignore all terms which include p to a power greater than 
2 .  We now sum for all particles in the group and note that, by definition of the centre of 
mass, Cmipi = 0 .  Thus 

V = -- Em, 
R [ 2R2 8 

- -- 3Cm, ( ep , )@, . e )  - - 

where the unit vector e = R / R .  
The term in the large parentheses may be written 

e 3Cmjpipj - 2Cm,pi1 .e ' 1  
2 

( 
By equation (4 .24)  the moment of inertia dyadic is 

I = X(mipil  - mjpjpi)  

and by definition ifp, = x j i  + y , j  + z,k then 

(5.58) 

so that 

I ,  + I, + I; = 2C(X5 + y; + z f )  = 2cp5 

This is a scalar and is therefore invariant under the transformation of axes. Thus it will also 
equal the sum of the principal moments of inertia. 

Using this information equation (5 .58)  becomes 

G + - e.[31 - ( I ,  + I, + Z3) l ] .e  Gm 7 = -- 
R 2~~ 

(5.59) 

where Z, is the moment of inertia about the centre of mass and in the direction of R.  
Let us now consider the special case of a body with an axis of symmetry, that is I ,  = 12. 

Taking e = li + mj + nk where 1,  m and n are the direction cosines of R relative to the 
principal axes, in terms of principal axes the inertia dyadic is 

I = iZ,i + jZ2 j + kZ3k 
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Thus 

e.1.e = l2d + m2z2 + n2z3 

= (1 - n2)1, + n2z3 
Finally equation (5.59) is 

Gm G 
[3(1 - n2>1, + 3n24 - 2 ~ ,  - z,] p = - - + -  

R 2 ~ 3  

R 2 ~ 3  
G (3n2 - I)(z, - 1,) (5.60) 

Refemng to Fig. 5.15 we see that n = cosy where y is the angle between the figure axis and 
R. Also from Fig. 5.15 we have that 

- Gm - - - + -  

cosy = e.e3 = [cos(y)i + sin(y)j].[sin(O)i + cos(8)k) 
= cosysine (5.61) 

Substituting equation (5.6 1) into equation (5.60) gives 

( ~ s ~ ~ ~ B c o s ’ ~  - 1)(13 - z,) p = - - + -  (5.62) 

The first term of equation (5.62) is the potential due to a spherical body and the sec- 
ond term is the approximate correction for oblateness. It is assumed that this has only 
a small effect on the orbit so that we may take an average value for cos2y over a com- 
plete orbit which is 1/2. Also, by replacing sin’8 with 1 - cos28 equation (5.62) may 
be written as 

G 1 - - cos2e (z3 - I , )  (5.62a) 

We shall consider a ring of satellites with a total mass of p on the assumption that motion 
of the ring will be the same as that for any individual satellite. Also the motion of the ring 
is identical to the motion of the orbit. The potential energy will then be 

Gm G 
R 2 ~ 3  

2R3 (5 2 3 ,  
p=--+- Gm 

R 

Fig. 5.15 
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(5.63) 

We can study the motion of the satellite ring in the same way as we treated the precession 
of a symmetrical rigid body in section 4.1 1. The moment of inertia of the ring about its cen- 
tral axis is pR2 and that about the diameter is pR2/2 .  Thus, refemng to Fig. 5.15, the kinetic 
energy is 

(5.64) 

andtheLagrangianZ = T - V. 
Because y~ is an ignorable co-ordinate 

dT -.- = ~ R ~ ( w  + 0 case) =constant 
aw 

(+ + S case) = 0, = constant 
so that 

With 8 as the generalized co-ordinate 

p ~ ~ 8  + p~’(+ + s C0se)dr sine - - pR20’ sinecose 
2 

+ -  pG (3sinecose)(~, - I , )  = o 
2~~ 

For steady precession 8 = 0 and neglecting S’, since we assume that S is small, we obtain, 
after dividing through by psino, 

I , )  = 0 

or 

(5.65) 

This precession is the result of torque applied to the satellite ring, or more specifically a 
force acting normal to the radius R. There is, of course, the equal and opposite torque 
applied to the Earth which in the case of artificial satellites is negligible. However, the effect 
of the Moon is sufficient to produce small but significant precession of the Earth. 

5.7 Rocket in free space 
We shall now study the dynamics of a rocket in a gravitational field but without any aero- 
dynamic forces being applied. The rocket will be assumed to be symmetrical and not rotat- 
ing about its longitudinal axis. Under these circumstances the motion will be planar. 
Refemng to Fig. 5.16 the XYZ axes are inertial with Y vertical. The xyz axes are fixed to the 
rocket body with the origin being the current centre of mass. Because of the large amount 
of fuel involved the centre of mass will not be a fixed point in the body. However, Newton’s 
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Fig. 5.16(a) and (b) 

laws, in the form of equations ( 1.5 1) and (1.53b), apply to a constant amount of matter so 
great care is needed in setting up the model. 

At a given time we shall consider that fuel is being consumed at a fixed rate, h, from a 
location B a distance b from the centre of mass and ejected at a nozzle located 1 from the 
centre of mass. Let the mass of a small amount of fuel at location B be mf and the total mass 
of the rocket at that time be m. The mass of the rocket structure is mo = m - m f .  The mass 
of burnt fuel in the exhaust is me and is taken to be vanishingly small, its rate of generation 
being, of course, h. The speed of the exhaust relative to the rocket is y .  

The angle that the rocket axis, the x axis, makes with the horizontal is 8 and its time rate 
of change is o. The angular velocity of the xyz axes will be o k .  If the linear momentum is 
p then 

dp = 2 + w k x p  = mg (5.66) 
d t  at 

where g = -gJ is the gravitational field strength. 
Now 

p = [m, i  + mfx + m,(x - y ) ] i  + [may + m~ + m$]j (5.67) 
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so 

dp 
dtm, 

= [may + m,z - m i  + i ( i  - y > ] j  + [m,y + m# - 6 + 6 1 j  

+ o[m,x + m,X]j - w[m,y + m$]i 
= [mf - my - o m y ] i  + [my + wmx]j  
= -gm sin(8)i -gm cos(8)j 

or in scalar form, after dividing through by m, 

(5.68) m 
m ’  x --v -my = -gsin0 

and 
y + ox = -gcose (5.69) 

By writing the moment of momentum equation using the centre of mass as the origin only 
motion relative to the centre of mass is involved. Because the fuel flow is assumed to be 
axial the only relative motion which has a moment about the centre of mass will be that due 
to rotation. We will use the symbol I,‘ to signify the moment of momentum about the cen- 
tre of mass of the rocket less that due to the small amount of fuel at B. Hence, the moment 
of momentum of the complete rocket is 

L,  = [I,’o + m,b20 + meZ2w]k (5.70) 

so 

5 = [(I,’ + m,b2)& - kb2w + kZ2w]k + wk X L,  
dt,& 

= [IG& + wk(Z2 - b2)]k 

= o  
in the absence of aerodynamic forces. 

The scalar moment equation is 

0 = I,& + orn(Z2 - b2) (5.71) 

The second term in the above equation provides a damping effect known as jet damping, 
provided that 1 > b.  

Because the position of the centre of mass is not fixed in the body both 1 and b will vary 
with time. They are regarded as constants in the differentiation since m,>O and m, may also 
be regarded as small because it need not be any larger than me. 

If the distribution of fuel is such that the radius of gyration of the complete rocket is con- 
stant then equation (5.70) is 

(5.70a) L,  = [mkiw + meo12]k 

0 = mki& + hw(12 - k i )  

and equation (5.71) becomes 
(5.71a) 

This last equation has a simple solution, we can write 

dw=- dm (Z2/ki - 1) 
dt dt m 
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or 

d o  - dm 2 2 
0 m 

and the solution is 

- -  --(1 lk ,  - 1) 

ln(o/wi) = - ( l z /k i  - 1) ln(m/mi) 

or 
- ( I L / k L - I )  

doi = (m/m,)  G 

If the initial mass is mi then m = mi - mt and thus 

(5.72) 

5.8 Non-spherical satellite 

A non-spherical satellite will have its centre of gravity displaced relative to its cen- 
tre of mass. The sense of the torque produced will depend on both the shape and 
its orientation. 

Consider first a body with an axis of symmetry such that the moment of inertia about that 
axis is the greatest (I3 > I l ) .  From equation (5.60) we obtain the potential energy of a non- 
spherical satellite, of mass m, and an assumed spherical Earth of mass M. 

With y as the generalized co-ordinate the associated torque is 

(5.73) 

If the figure axis is pointing towards the Earth (y is small) then when I3 > 1, the torque is 
proportional to y and is therefore unstable. When I3 < I ,  the torque is proportional to -y and 
is stable. The satellite will then exhibit a pendulous motion with a period of 

For the case when y is close to n / 2 so that y = K / 2 + p then the torque becomes 

so that the configuration is stable when Z3 > I ,  and the period will be 

(5.74) 

(5.73a) 

(5.74a) 
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5.9 Spinning satellite 

If the satellite is spinning about its figure axis then the torque described in the previous sec- 
tion will produce precession of the figure axis. The kinetic energy of a spinning symmetri- 
cal body is, by equation (4.82), 

1 .2 1 1 
2 2 2 T = -1,e + -1,b2sin28 + -1,(lrcose + $>' 

Lagrange's equation with 8 as the generalized co-ordinate may be written 

When the figure axis is along the radius to the Earth y + 8 and thus equation (5.73), with y 
replaced by e, gives ae. 

Applying Lagrange's equation leads to 

(13 - 1,) = 0 G M m  (sin(2e)) 
2 

For steady precession, 6 = 0, 

Assuming that wZ s band that 8 is small 

(5.75) 

The effect of making I ,  > Z3 is simply to change the sign of the precessional velocity. If the 
figure axis is at 90' to the radius then the signs of 0 are reversed. Thus all configurations are 
stable but with differing precession rates. 

5.10 De-spinning of satellites 

An interesting method of stopping the spin of satellites is shown in Fig. 5.17. Two equal 
masses are attached to cables which are wrapped around the outside of the satellite shell. 
When it is required to stop the spin the masses are released so that they unwind. Relative to 
the satellite the masses follow an involute curve so that the velocity of the mass relative to 
the satellite is always normal to the cable and has the value sf, where s is the length of 
unwound cable and y is unwrap angle. From the geometry s = Ry. The moment of inertia 
of the satellite about its spin axis is I and the angular velocity is o. The kinetic energy of the 
system is 

I '1 = -10 1 2  + mR'y2(? + of + o 
2 

which in the absence ofexternal forces is-constant. The constant may be equated to the 
initial conditions when o = oo. Thus 
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Fig. 5.17 

(5.76) 2 2  ’1 2 ’1 ; 2 

1 
--lo’ + mR y (y + of + w 
2 = --loo + m R w ,  

Because the angle of rotation of the satellite is a cyclic co-ordinate 

E = constant 

lo + 2mR2[y2(j  + w) + 01 = constant = Zoo + 2mR20, 

a0 
Hence 

(5.77) 

Equation (5.76) can be written as 

( I  + mR2)(oi - w’) = 2m2y2($  + wf (5.76a) 

and equation (5.77) becomes 
(5.77a) 2 2 .  ( I  + mR2)(wo - w) = 2mR y (y + w) 

Dividing equation (5.76a) by equation (5.77a) gives 

and therefore 
w , + o = y + o  

i. = wo = constant 

So we see that the rate of unwinding is constant. 
If we require that the final spin rate is zero then putting w = 0 in equation (5.77) yields 

-Zw, + 2mR2(y2w, - wo) = 0 

y2 - I = Z/(2mR2) 
or 

Thus the required length of cable is 

s = y R =  R J ( - I -  + 1) (5.78) 
2mR2 
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5.1 1 Stability of aircraft 

In this section we shall examine the stability of an aircraft in steady horizontal flight. The 
general equations will be set up but only the stability requirements for longitudinal motion, 
that is motion in the vertical plane, will be studied. Since most aircraft are symmetrical with 
respect to the vertical plane motion in this plane will not be coupled to out-of-plane motion 
or to roll and yaw. 

Refemng to Fig. 5.18 we choose x to be positive forwards, y to be positive to the right 
and z positive downwards. The origin will be at the centre of mass. The motions in these 
directions are sometimes referred to as surge, sway and heave respectively. Rotations about 
the axes are referred to as roll, pitch and yaw. 

The symbols used for the physical quantities are as follows 

Note that in many cases L is used for lift and V i s  used for forward velocity. In the present 
section we will use L for lift and use L, to signify rolling moment. 

By symmetry the y axis is a principal axis of inertia and we shall assume that the x axis 
is also a principal axis; therefore the z axis is a principal axis. 

The momentum vector is 

p = mUi + mVj + mWk (5.79) 

The angular velocity of the axes is 

o = p i  + qj + rk (5.80) 

Hence the time rate of change of momentum is 

. ap + o x p  p = x  

= mui + mVj + mwk + m(qW - rV)i + m(rU - pW) j  

+ m@V - qU)k (5.81) 

and the force is 
F = X i + Y j + Z k  (5.82) 

Therefore 

X = m ( i  + qW - rV) (5.83) 
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Fig. 5.18 

Y = m(; + rU - pw) 

Z = m(w + pV - q u )  

The moment of momentum relative to the centre of mass is 

L, = Api + Bqj + Crk 

(5.84) 

(5.85) 

(5.86) 
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Hence the rate of change of moment of momentum is 

LG = - aLG + 0 x LG 
at 

= Api  + Bqj + Cik + (Crq - Bqr)i + (Apr - C V ) j  

+ (&?P - A P d k  (5.87) 

The moment of forces about G is 

MG = Li + Mj + Nk 

Therefore 
(5.88) 

L, = Ap + (C - B)qr 

M = Bq + (A - C)rq 

N = Ci + (B  - A)pq 

(5.89) 

(5.90) 

(5.91) 

We now restrict the motion to the vertical xz plane so that V = v = 0, p = 0 and r = 0, and 

The equations of motion reduce to 
by symmetry Y = 0, Lr = 0 and N = 0. From this it follows that G = 0, d = 0 and I: = 0. 

X = m(u + qw)  = mu as W+O (5.92) 

z = m ( 6  - qv = m ( 6  - itu (5.93) 

M = Bq = r,e (5.94) 

where q = 6 and B =I,,. 
Consider first the aircraft in straight and level flight. Figure 5.19 shows the major aero- 

dynamic forces and gravity.The lift, L,  is the aerodynamic force acting on the wing normal 
to the direction of airflow. It is related to the wing area S, the air density p, and the airspeed 
U by the following equation 

1 
2 

L = c, - pu2s 
where C, is known as the lvt coejicient. The drag, D, is 

(5.95) 

Fig. 5.19 Aerodynamic forces 



1 12 Dynamics of vehicles 

(5.96) 1 
2 

where C, is the drag coeficient. 
The drag coefficient is the sum of two parts, the first being the sum of the skin friction 

coefficient and form drag coefficient which will be assumed to be sensibly constant for this 
discussion. The second depends on the generation of lift and is known as vortex drag or 
induced drag. Texts on aerodynamics show that the theoretical value is CD, = C:/(x(AR)), 
where (AR) is the aspect ratio, that is the ratio of wing span to the mean chord. Thus 

(5.96a) 
Tis the thrust generated by the engines and is assumed to be constant. The weight is, of 

course, mg. 
The aerodynamic mean chord (amc), symbol E ,  is the chord of the equivalent constant- 

chord wing. The line of action of the lift (centre of pressure) moves fore and aft as the angle 
between the chord line and the air (angle of incidence a) changes. This is taken into account 
by choosing a reference point and giving the moment of the lift force about this point. The 
pitching moment is given by 

D = C, - pU2S 

CD = C, + c:/(K(AR)) 

where CM is the pitching moment coefficient. It is found that a point exists along the chord 
such that the pitching moment coefficient remains sensibly constant with angle of incidence. 
This point is called the aerodynamic centre (ac) and typically is located at the quarter chord 
point. The tailplane lift is 

(5.98) 

where the suffix t refers to the tailplane. The airspeed over the tailplane will be slightly less than 
the speed of the air relative to the wing because of the effect of drag. We shall ignore this effect 
but it can be included at a later stage by the introduction of a tailplane efficiency. Another effect 
of the wing is to produce a downwash at the tailplane. This is related to the lift of the wing which 
has the effect ofreducing the gradient of the tailplane lift to incidence curve. 

The lift and drag of the fuselage could be included by modifying the lift and drag coeffi- 
cients but the pitching moment will be kept separate because in general it will vary with 
angle of incidence. 

For steady horizontal flight with the x axis horizontal the only non-zero velocity is U, the 
forward speed. In this case the thrust is equal to the drag and the sum of the wing lift and 
the tailplane lift is equal to the weight. Only a small error will be introduced if the tailplane 
lift is neglected when compared with the wing lift; hence 

T - D = O  (5.99) 

1 2  
2 

L, = CL, - pus, 

m g - L = O  (5.100) 

Taking moments about the centre of mass 

Dividing through by L E  gives 
M = Mf + M, + L ( h  - ho)E - L,1, = 0 (5.101) 

(5.102) 
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(5.102a) 

(5.103) 

The term SI = v, the tail volume ratio, so 
SE 

CL, - + (h  - h,) - -v = 0 CMf ch4ac 

CL CL CL 
- + -  

For static stability we require that E< 0; that is, if the angle of incidence increases the 
moment generated should be negative so as to restore 0 to the original state. Operating on 
equation (5.101) 

- -- acLr pU2St1, e 0 
aa 2 (5.104) 

Dividing through b y h U 2 S c  and noting that aC,,,/aa = 0 yields 

- + a,(h - h,) - atV < 0 (5.105) 

where the symbol a stands for the gradient of the lift coefficient versus the angle of inci- 
dence. 

acMf 

aa 

The critical, or neutral, value of h, h,, is that which makes aMlaa = 0, so 

a 1 acMf 
a1 a ,  aa 

h, = h, + L V  - - ___ 

The stick-jixed static CG margin is defined to be 

a 1 ac,, h, - h = (h, - h)  + 2.7 - - - 
a ,  a,  aa 

(5.106) 

(5.107) 

and is the distance of the CG in front of the neutral point as a fraction of the aerodynamic mean 
chord. The term ‘stick-fixed’ signifies that the elevator is held fixed and not allowed to float. 

For dynamic stability we consider that the aircraft has pitched a small angle 0 to the 
horizontal and that there are increments in speed in the x direction of u and in the z direction 
of w. Referring to Fig. 5.20 we see that for small deviations in angles and speeds the variation 
in the angle of incidence at the wing is 

(5.108) 6 a = 0 + -  
U 
W 

and the variation in airspeed 
6U = u 

Therefore 
6(U2) = 2uu 

(5.109) 

(5.1 10) 

The effect of 6a is twofold. One is to increase the magnitude of the lift and drag terms and 
the other is to rotate the directions of the lift and drag terms relative to the xyz axes. 

In the x direction the changes in the force terms are equated to the rate of change of 
momentum in the x direction as given in equation (5.92) 

-m@ + L6a - 6D = mu 
W 1 acD 1 W -m@ + ~ ( 0  + -) - c,--~~uus - ---~u’s(o + -1 = m i  
U 2 aa 2 U 
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Fig. 5.20 

Differentiating equation (5.96a) we obtain 

ac, = 2 C L U ,  
aa n ( ~ )  

Substituting for aCD/ aa and dividing through by mg = L gives 

(5.1 11) 

Let ( E  4 ) = D, a non-dimensional operator, and let u/U = P and w/U = R. Hence equa- 
tion (5.1 1 1) becomes 

g u dt d ( u )  U 
- - 2 -  -- e + -  = - u = - - -  1 .  (G) 2 (L) -n;A) ( ;) g 

( C J  ( n 2 ) )  NAR) 

g d t  

(5.1 12) 2CD - 2a I ~ + - ~ - z i - - -  + - e = o  

In the z direction, following equation (5.93), 

- 6 ~  - D 6a = m ( 6  - 6v> 

-a,(e + W / U )  --~u's - c,--~~uus - c,- p ~ z S ( 0  + W / U )  = m(w - 6 ~ )  1 1 1 
2 2 2 

Dividing through by L = mg 

CD U d  - '1 +q - 2~ - - (e+@) = -- (w - e) --(e 
CL CL g dt 

or 

(5.1 13) 
cD 1 ( CL a ")- CL ( CL CL 

2 ~ + ~ + 1 + - ~ -  ~ - - - - e = o  a1 

Taking moments of the force variations about they axis 

SM, + 6i& + 6L(h - h,)C - 6Lt1, = I$ 
Evaluating the variations and dividing through by LE = mgC we amve at 
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Collecting terms and replacing dldt  by (g/r / )D leads to 

(5.1 14) 

Note that from equation (5.103) the coefficient of 224 in the above equation is zero. Also 
from equation (5.107) the coefficient of R may be written as -(SM)a,/CL, where SM is the 
stick-fixed static CG margin. Therefore equation (5.1 14) becomes, after a change of sign, 

(5.115) 

Equations (5.1 12), (5.1 13) and (5.1 15) are three simultaneous equations in the non- 
dimensional variables zi, R and 8, with D being a differential operator in non-dimensional 
time. 

Defining the following constants 

K ,  = k:g/(FU2) 

K2 = a , l , gV/ (C ,d )  

K3 = (SM)a,/CL 

K4 = (a ,  + CD)/CL 

Ks = 2a,/rc(AR) 

K6 = 2cD/cL 
the three equations may be written in matrix form as 

(D + &) -(I - Ks) KS 
2 (D + K4) -(D - K4) 
0 K3 (KID2 + K,D + 

][I] = [ O] (5.116) 

K3) 
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(iii) 

The differential operator has been defined to be 

D E 0  
B c D > 0 
0 A B  

where T = tgIU is the non-dimensional time. 
Assume that 

= 
e = GeLT 
e = eelT 

Substitution into equation (5.1 16) gives the following set of three simultaneous algebraic 
equations 

(1 + K6) -(I - 4) K5 
(A + K4) -(h - K4) 

K3 (K,A’ + K2h + K3) 

For a non-trivial solution the determinant of the 3 X 3 matrix has to be zero, yielding a quar- 
tic in h in the form 

(5.118) Ah4 + Bh3 + Ch’ + Dh + E = 0 

Expansion of the determinant leads to 

A = K, 

B = K, + K4K, + K,& 
C = 2K3 + K&2 + 2(1 - K5)4 + (& + K&)& 
D = 2(1 - K,)& + (2K3 + K44)& 

E = 2K3 

The overall stability of the system can be tested using the RoutbHurwitz criteria (see 
Harrison and Nettleton 1994) which states that 

(i) all coefficients > 0 
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Fig. 5.21 Phugoid oscillation 

In general the solution to the equations is two sinusoids. A high-frequency heavily 
damped mode and a low-frequency low-damped mode which is known as phugoid morion. 
Equation (5.1 18) may be written in the form 

(h2 + ah + p)(2 + y3~ + 6 )  = o 

h4 + (a + y)h3 + (ay + p + 6 ) ~ ’  + (a6 + py)h + PS = o 
which expands to 

(5.120) 
and comparing with equation (5.1 18) 

a + y = BIA 

ay + p + 6 = CIA 

a6 + by = D / A  

p6 = E/A (5.121) 

Rearranging the equations as follows 

a = B l A  - y 

p = CIA - 6 - ay 

6 = (E1A)lp 

y = (DIA - a6)IP (5.122) 

From vibration theory the roots of the quadratic indicate two damped sinusoidal motions 
gives an iterative procedure which converges rapidly. 

of damped natural frequency wdl and wd2 with the corresponding damping ratios <, and C2 
Odl = J(p)J(l - <:> 
Ll = a/(2J(P)) 

and 

Od2 = J(s>J(l  - r:) 
c 2  = Y/(2J@)) 

The periods of oscillation are 
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T,  = 2n/o,, 

T2 = 2x/od2 

For the majority of aircraft the first mode is a heavily damped short-period (a few sec- 
onds) oscillation and the second is a low-damped long-period (of the order of minutes) 
oscillation known as a phugoid oscillation. 

A large static margin will usually lead to high stability but may make the aircraft difficult 
to manoeuvre. 

5.12 Stability of a road vehicle 

We shall consider the stability of a four-wheeled motor vehicle for small deviations from 
straight line motion and for a steady turn. The effects of roll on the suspension geometry and 
tyre characteristics will be neglected. The approach will be similar to the treatment of air- 
craft stability given in the previous section. In this case the two front tyres act in a similar 
manner to one aerofoil and the rear pair of tyres will be thought of as another aerofoil. 

The tyre is a complex component with a non-linear behaviour. The characteristic which 
concerns us most is the relationship between the lateral force and the side-slip angle, see 
Fig. 5.22. For small lateral forces this force, F, varies linearly with side-slip angle, a, and 
the initial gradient, Z = C, is the lateral force coefficient. For any given tyre this co- 
efficient depends on the vertical load, tyre pressure, camber angle and the type of surface on 
which the tyre is running. Braking and traction will also affect the coefficient. We will treat 
the two front tyres as a single tyre with a fixed lateral force coefficient C, and the two rear 
tyres as a single tyre with coefficient C,. 

The notation for the rigid body motion shown in Fig. 5.23 is the same as that used for the 
aircraft in Fig. 5.18. The forces involved are shown in Fig. 5.24. The angle of steer of the 
front wheels is 6, and that of the rear wheels is 6,. The centre of mass is located a distance 
a from the front axle and b from the rear axle. The s u m  of these two is the wheelbase L. 
Traction has been assumed to be at the front wheels. 

From Fig. 5.23 we see that the tangent of the angle of the direction of motion of the front 
wheel relative to the X axis is 

aF 
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Fig. 5.24 

V + $a (5.123) tan(& - af) = U 
and for the rear wheel 

$b - V 
U tan(a, - 6,) = 

or 

(5.124) V - $b 
U tan(6, - a,) = 

Resolving forces in the X direction gives 

X + TcosGf - F,sinGf - &sin& = m(U - V$) (5.125) 

in the Y direction 

Y + TsinGf + FfcosSf + &cosG, = m(V - U$) (5.126) 

and taking moments about the Z axis through the centre of mass 

N + Tsin(6,)a + F,cos(Gf)a + Kcos(6,)b = m k a v  (5.127) 

where kG is the radius of gyration. 
The lateral forces are related to the side-slip angles by the lateral force coefficients 
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F, = Cfaf (5.128) 
F, = Crar (5.129) 

We shall assume that the rear steering angle is proportional to the lateral force with a con- 
stant of proportionality l/Kr. Thus 

(5.130) 

Straight line stability is a measure of the vehicle’s ability to proceed in a straight line with 
the steering angle fixed at zero. Substituting equations (5.128) to (5.130) into equations 
(5.123) and (5.124) gives 

Fr 6, = - 
Kr 

and 
Fr F, V +a 
C, K, U U 

-- + -  = -  - - 

or 
Fr V +a 
c; u u 

(5.131) 

(5.132) 

where 

c; = Cr (5.133) 

ThetermC; isaneffectivecoefficient. ItisseenthatapositiveK,hasthesameeffectasincreasing 
the lateral force coefficient so in subsequent equations the prime will be dropped. It is assumed 
that should rear wheel steering be present then its effect will have been already incorporated. 

Substituting these equations into equations (5.128) and (5.129) and assuming that the 
side-slip angles are small gives 

(1 - Cr/K) 

Cya Cfa’$ CrVb C,b’\lr - - + - - - -  - mG,W 
U U U N - -  U 

Using the D operator the two equations above may be put into matrix form - 
L 

(Crb + Cfa) 

For the case when Y = 0 
be complex. Substitution 

and 
into 

(Crb + Cfa) mU - 
(C,b’ + U Cfa2) ][ :] = [ i] (5*  

mk@ + 
U 

N = 0 we assume that V = Pe” and $ = @e*‘ where h 
equation (5.134) and ciividing through by eU leads to 

134) 

may 

] [ I  =[:I (5.135) 
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For a non-trivial solution the determinant of the square matrix must equate to zero yielding 
the characteristic equation 

X2[m2ki] + urn(Crb2 + Cfa2) + mkA(Cf + Cr)]/U 
+ [(Cf + Cr)(Crb2 + Cfa2) - (Crb - Cfa)2 + rn(C,b - C f a ) d ] / d  
= o  

which reduces to 

h2[m2k;d] + hU[Crb2 + Cfa2 + kA(Cf + C,)] + [CfCJ2 + md(C,b  - Cfa)] = 0 (5.136) 
From the theory of differential equations it is known that if the motion is stable then all coef- 
ficients must be positive. The coefficient of h2 is always positive and the coefficient of X is 
also positive. It should be noticed that if U is negative then the definition of the transverse 
force coefficient requires both Cf and C, to be negative. 

The constant term will also be positive for all speeds if (C,b - Cfa) > 0. So for the case 
of a vehicle with four identical tyres b > a, that is the centre of mass must be forward of 
the mid-point of the wheelbase. 

If the above condition is not met then the vehicle will be stable only if 

C4l.L’ - - U:”t,cal (5.137) 

Therefore as the centre of mass moves towards the rear axle the critical speed, Qntlcal, 
becomes lower. 

The concept of static margin is similar to that defined in the previous section on aircraft 
stability. Figure 5.25 shows the case of a car under the action of a steady side load Y 
located a distance n forward of the rear axle and such that now yaw is produced. This 

u2 < rn(CfU - C,b) 
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point is known as the neutral steer point. Let the common side-slip angle be p so that in 
the Y direction 

(5.138) (Cf + CJP = y 
and taking moments about the rear axle gives 

Yn - C#L = 0 (5.139) 

Thus 

(5.140) 

The static margin is defined as the position of the centre of mass ahead of the neutral steer 
point expressed as a fraction of the wheelbase. Therefore the static margin is given by 

C& 
(Cf + Cr) 

n =  

(5.141) 

From this we see that if the static margin is positive a side load to the right applied at the 
centre of mass will give rise to positive yaw, that is the car will turn to the right, and left 
hand steer is required to maintain the same heading. This condition is called understeer and 
is seen to correspond to the condition for stability at all speeds. A negative static margin 
gives rise to oversteer and corresponds to the condition where there exists a critical speed. 
We shall discuss this further when dealing with a steady turn. 

Figure 5.26 shows the geometry for a steady turn. The radius of the turn is defined to be 
the distance from the centre of the turning circle to the centre of the rear axle. For a low- 

(b - n) - - (Crb - C,a) 
L L(Cf + Cr) 

SM = 

Fig. 5.26 
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speed turn the centre will be the intersection of the normal to the rear wheels and the normal 
to the front wheels. Thus 

R, = L/tan(6) (5.142) 

Also 
U = $Rr (5.143) 

We shall now look at the variation in the radius of turn due to small changes in the side- 
slip angles. From the figure 

( 5 .  

Resolving in the Y direction 

Cra, + Cfa,cos6 = mu$ 

Cfa,cos(6)a - C,a,b = 0 

(5. 

( 5 .  

and by moments about the centre of mass 

Now tan6 = L/Rr and sin6 = LIR,, and therefore equation (5.144) becomes 

( 5 .  
La, La, 

dRr = - - 
sin'6 tan's 

- 

Eliminating C,a, from equations (5.145) and (5.146) gives 

C,ar (1 + b/a) = m u $  
or 

and 

bm U' 
Lcos(6) C,R, a, = 

Substituting into equation (5.147) and rearranging gives 

dR, = LC,C,sin6 m' (5 cos6 - acFos'6) 

If the steering angle is small then the radius of turn reduces to 

m' (crb - C,a) L R = - + -  
6 LCrC,6 

1 mu' (Crb - Cfa)  - - l + -  - " (  6 L L C G  
or 

6 = -  L ( I + -  mLu' (Crb - 
Rr LCrG 

(5.148) 

(5.149) 

(5.150) 

(5.151) 

(5.152) 
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Figure 5.27 shows the plot of path curvature versus speed for a given steering angle and Fig. 
5.28 is a plot of steering angle versus speed for 9 given radius of turn. It is seen that when 
the static margin is positive the steering angle has to be increased to maintain the same 
radius of turn and the vehicle is understeering. When the static margin is negative the steer- 
ing angle has to be reduced in order to keep the radius constant and the vehicle is over- 
steering. After the critical speed has been reached the vehicle is unstable. 

Looking at the situation with fixed steering angle it is seen that an understeering vehicle 
will run wide if the speed is increased whilst an oversteering one will tighten its turn if the 
speed is increased. 

It must be noted that traction has an effect on the static margin: for front wheel drive 
cars the static margin is made more positive whilst for rear wheel drive cars it is made 
more negative. 

Fig. 5.27 

Fig. 5.28 



I m pact a nd On e-Di me nsiona I Wave 
Propagation 

6.1 Introduction 

This chapter deals with the propagation of waves or pulses in an elastic medium. The most 
fruitful application of this theory is in the study of impact. Transient phenomena can be dealt 
with using vibration methods but for short-duration impacts a large number of the normal 
modes have to be considered and in these cases a wave technique often leads to a simpler 
solution. 

The simplest form of wave propagation is the non-dispersive wave. A non-dispersive 
wave is one which travels at a fixed speed through the medium without change in shape, 
for example a pulse of the form of a half sine wave will always remain a half sine wave. 
Physical systems which approximate to this condition are longitudinal waves in a uni- 
form bar, torsional waves in a uniform bar and small-amplitude waves in a stretched 
string. However, bending, or lateral, waves in a bar are dispersive so that the shape of a 
transverse wave will be continually changing. This corresponds to different wavelengths 
travelling at different speeds so here there is no fixed speed of propagation. In the inte- 
rior of an elastic medium plane waves are non-dispersive; these will be discussed in the 
next chapter. 

6.2 The one-dimensional wave 

A wave may be pictured either as the variation in time of some physical quantity, u, at a 
fixed location or as a variation with distance at a fixed time. Figure 6.1 shows a series of 
pulses at constant times and at constant positions. An arbitrary function of argument z is 
given in Fig. 6.2 in mathematical terms u =f(z). In Fig. 6.3 this shape is used to represent a 
plot of u versus time t for a given position x = 0. If the pulse is assumed to be travelling 
along the positive x axis at a constant speed c then there will be a time delay of xIc. We shall 
change the time variable from t to ct so that both axes have the dimensions of length. Now 
at x = 0 we can represent the pulse as u =f(ct) and at x = x by u =f(ct - x). 

We may now write for an arbitrary pulse moving at a speed c along the positive x axis 

u = f(ct - (x - p)) 

z = ct - (x - p) 

(6.1) 

(6.2) 

where p is the location of the head of the pulse when t = 0. In this case the argument is 
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Fig. 6.1 

Fig. 6.2 

Fig. 6.3 

Figure 6.4 shows the same situation but this time the pulse is shown as the variation of u 
against distance. 

For a pulse travelling in the -x direction (see Fig. 6.5), again at a speed c, the pulse is 
given by u = g (x) at r = 0 and by u = g (x -(-cr)) at t = -r. It is convenient to express 
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pulses travelling in the negative direction by u = g (z) = g(ct + x), the reasons for which 
will become clear later. In the same manner as for the positive-going pulse we may gener- 
alize to 

u = g (ct + (x - y)) 

z = ct + (X - y) 

(6.3) 

(6.4) 

Also . 

where y is the position of the head of the pulse when t = 0. 
In both cases at the head of the pulse z = 0. If the pulse has a finite length L in space then 

its duration T will be L/c so that a = c(L/c) = L. Thus for both waves at the tail of the 
pulsez = L. 

In general waves may be travelling in both directions simultaneously and therefore 

u = Act - (x - p)) + g(ct + (x - y)) (6.5) 

Let us now evaluate the partial differentials of u with respect to x and to t 
du du dz df az dg az + - -  - - _ - _  _ _ - -  
ax dz ax dz ax dz ax 

= : ( -1)  + dg - (+1) 
& 

= -f + g’ (6.6) 
where the prime signifies differentiation with respect to the argument. Similarly 

Fig. 6.4 

Fig. 6.5 
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a u  - du az dfaz dg az 
at dz at dz at dz at 

+ - -  - - - -  _ - _ _  

df dg = - (c) + -& (c) dz 

= cf + cg’ (6.7) 
We see that for both f and g functions differentiation with respect to time produces a multi- 
plication factor of c whilst differentiation with respect to x requires a factor of - 1 f o r f h c -  
tions and +1 for g functions. This is the reason for using different symbols for forwards and 
backwards travelling waves because in this way it is easy to carry out any differentiation. 

Repeating the above scheme we obtain the second partial differentials 

- f ’ ( q 2  + g”(+1)2 = f*’ + g” (6.8) 

(6.9) 

a 2 U  

ax2 

at” 

a2u - 2 a2u 
at” “a,’ 

- -  

- -  a2U - f@)* + g”(c)2 = c2fl + c2g” 

By inspection of equations (6.8) and (6.9) we see that 

(6.10) 

This important equation is well known in many branches of physics and is called the wave 
equation. It follows immediately that any physical system which yields this equation will 
have non-dispersive waves travelling at a speed c as a solution. 

6.3 Longitudinal waves in an elastic prismatic bar 

Figure 6.6 shows a portion of a long uniform elastic bar. Young’s modulus is E and the 
density of the bar is p. The cross-sectional area is A ,  which is also constant. The co-ordi- 
nate x is the location of a given cross-section in the quiescent state. A small movement of 
the particles at this location is designated as u and this movement is assumed to be con- 
stant across the cross-section, that is plane sections remain plane. In this system x is in 
effect the name of the group of particles at a given cross-section and u is their displace- 

- -  

P E  

Fig. 6.6 
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ment. This scheme is known as Lagrangian co-ordinates as opposed to Eulerian co- 
ordinates where x is a fixed location in space (see Harrison and Nettleton (1994) or any 
book on fluid dynamics). 

The mass of the element is pA dx and this is a constant even if A and p vary with 
stress because this is the mass between two marks on the bar. Measurements made on 
the bar would usually be made using strain gauges or accelerometers which are attached 
to the bar and move with it. This is in contrast to most measurements in fluids where the 
measuring device, such as a pressure sensor, would be attached to the vessel containing 
the fluid. 

The force acting on a cross-section is the product of the stress CT and the original cross- 
sectional area A .  Equating the resultant force to rate of change of momentum gives 

i E) (.+gdx) A - o A = -  p A d x -  
a 
dt 

or 
a0 - aZU 
- - P a p  ax 

By definition the strain, E, is the change in length per unit length. Thus 
(u + au/axdx) - u- au - -  

dx ax E =  

Hooke's law gives us 

CT = E E  

Substituting equations (6.13) and (6.12) into equation (6.1 1) leads to 

aZu a2U 
ax- at' 

E , = p -  

or 

(6.1 1) 

(6.12) 

(6.13) 

(6.14) 

where c = , (E/p). (For steel and aluminium this wave speed is of the order of 5 000 m/s or 
5 mm/ps.) 

Consider first the case in which a wave is moving in the positive x direction only. Here 

u = f (c t  - x )  

The choice of p = 0 signifies that the head of the wave is at the origin when t = 0. The 
strain is 

and the particle velocity 

(6.15a) 

(6.15b) 

From equations (6.15a) and (6.15b) we get 
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V 
(6.16) 

Also 

Ev Q = E E =  - _  
C 

From equation (6.14) E = pc2 and therefore 

Q = - (pc)v  (6.17) 
The quantity pc is called the characteristic impedance, Z,, of the material. Thus 

Z, = pc = Elc = , (Ep)  (6.18) 

Notice that for a wave which is moving only in one direction there is a direct proportion- 
ality between stress and velocity, not acceleration. From equation (6.1 1) it is seen that accel- 
eration is related to the spatial rate of change of stress. Therefore an accelerometer used in 
impact situations may exhibit very high values of acceleration but it is the integral of accel- 
eration which is related to the stress in the bar. The relationship between acceleration and 
stress is only relevant when a body is behaving as a rigid body. This implies that the change 
in stress is small in the time taken for a wave to traverse the body and return. This point will 
be explored later. Even in cases of steady vibration it can be shown that maximum stress is 
related to maximum velocity, though not necessarily at the same location. In earthquake 
engineering a pseudo velocity is used to assess damage. 

6.4 Reflection and transmission at a boundary 

A boundary is a position where there is a sudden change in the material characteristics and 
this may be associated with a small change in the cross-sectional area. A large change in 
area will make the assumption of plane waves less acceptable. Figure 6.7 shows a change of 
properties at x = 0. The incident wave is ui =f(c,t - x), the reflected wave is u, = g(c,t + x )  
and the transmitted wave is ut = F(c2t - x). At x = 0 there must be continuity of velocity 
and there must also be continuity of force. Thus for continuity of velocity 

aui au, aut 

at at at  

cf + qg’  = C 2 F  

- + - = -  

(6.19) 

and for force 

-(EA)If + (EA)lg’ = (EA)#” 

Eliminating F’ from equations (6.19) and (6.20) 

(6.20) 

(6.2 1) 

Impedance Z is defined to be the ratio of the force acting on a surface to the velocity of 
that surface in the direction of the force. Therefore 
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Fig. 6.7 

Z = - E M v  = - EAf (- l)/(cf) = EA/c = ZJ (6.22) 

Multiplying equation (6.2 1 )  by c2/c, and introducing the impedance gives 
Zl f ( 1 - -  z2 ) + d  ( 1  +; ) = o  

g' = -f ( zz + z, ) 
or 

(6.23) 
z2 - ZI 

From equation (6.19) 
CI 

c2 
F' = - ( f  + g ' )  

and substituting from equation (6.23) 

(6.24) CI 22, 

c2 z2 + ZI 
F ' = - f  ( ) 
reflected strain - 

incident strain -f 

reflected velocity c,g' 
incident velocity c f  

transmitted force (EA),F' - Z2 

From the above equations 

(6.25a) = A'= (Z2 - 4 )  1 (Z2 + Z J  

- - -  - -(Z2 - Z J / ( Z 2  + 4 )  (6.25 b) - 

- --- 22, / (Z, + Z , )  (6.25~) 
incident force (EA)lf z, 
transmitted velocity c2F' 

(6.2 5d) - - - -  - 22, / (Z2 + Z , )  
incident velocity C l f  

For the case of a free end, that is Z2 = 0, we see that the reflected strain is of the opposite 
sign thereby making the strain at the end zero as would be expected for a free end. The 
related velocity in this case is of the same sign thus doubling the velocity at the free end. A 
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true fixed end is not possible but if Z2 % Z, then the velocity at the 'fixed' end would be 
zero whilst the strain would be doubled. For the transmitted pulse both the strain and the 
velocity will be of the same sign as those of the incident pulse. 

6.5 Momentum and energy in a pulse 

Consider a pulse, shown in Fig. 6.8, such that the displacement is u = f(ct - x) and is non- 
zero only between z = 0 and z = L. The momentum carried by the pulse is 

L 

0 0 
G = J pAv d(x) = pALc j! f d(x1L) (6.26) 

The kinetic energy is 

T = J L P  - Av2 dx = PAL c2 J'(f'f d(x/L) 
02  2 0  

L 1  EAL ' 
and the strain energy is 

V = J - EAc2dx = - J (f'), d(x1L) 
0 2  2 0  

Now since c2 = E/p the expression for kinetic energy is identical to that for strain energy, so 
the energy is equally partitioned. Therefore we may write the total energy as 

e = pALc2 i (f') 'd(f)  (6.27) 
0 

Returning to the previous section 

transmitted energy - (PALC2)2 ( - CI 2 2 ,  )2 - 
incident energy ( P A W ,  c2 (4 + Z2) 

The length of the pulse will change as it passes from one region to the other but the dura- 
tion will remain constant, so 

L , l c ,  = L21C2 

L2 I L, = c , I c ,  

or 

Noting that Z ,  = p,A,c, and Z, = p2A2c2, then 

Fig. 6.8 
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- z,c: k (4 2z' + Z2) l2  transmitted energy 2,cf cI 
incident energy 

- 

(6.28) 

Note that this ratio varies between 0 and 1 and is symmetrical, so the amount of transmitted 
energy does not depend on the direction of travel. 

6.6 Impact of two bars 
Two bars are shown in Fig. 6.9. The first bar has a finite length L and the second is long, 
such that the reflected wave from its far end will amve after the impact has ceased. It is 
assumed that the impact occurs over a plane surface; in the next section we shall investigate 
the effect of a spherical contact surface. 

The bars collide with an approach velocity of V. It is assumed that both bars are stress free 
before impact and the long bar is stationary. At impact a wave go moves to the left in the 
short bar and a wave Fo moves to the right in the long bar. The wave reaches the end of the 
short bar and a reflected wavef; is generated so that the strain at that end is zero. When this 
wave returns to the impacted end a new set of waves are generated. This process is shown 
diagrammatically in Fig. 6.10. 

- 42221 - 
(4 + z*)2 

In general 

fn =fn(c , t  - x - n2L) 
g,, = g,, (c,t + x - n2L) 
F,, = F,, (c2t - x - n2Lc21c,) 

with fo = 0. 
The arguments can be verified by inspection of the diagrams. The constant is the appar- 

ent position of the head of the wave at t = 0. Alternatively it gives the time when the waves 
originate either at x = 0 (for g,, or F,,) or x = -L (forfn). 

Fig. 6.9 
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Fig. 6.10 

At x = -L the strain is always zero and hence 

g:-, (c,t + ( - L )  - (n - 1)2L) - fn (c , t  - ( -L)  - n2L) = 0 

or 

f"= gA-1 (6.29) 

At x = 0 there must be continuity of velocity. For the short bar the particle velocity is super- 
imposed on the pre-impact speed of J! Thus 

(6.30) V + cJ*, + c,gL = c2F; 
and the contact force is 

C I Z l f n  - c,z ,g: ,  = -C2Z2Fn (6.3 1) 

(note that Z = force/velocity). 
From equations (6.29), (6.30) and (6.3 1) we obtain 

2v/c ,  - (1 - z , /Z,)g:- ,  

(1 + ZJZ2) 
(6.32) g'n = 

and 

(6.33) ) clzl c2z2 ( (1 + Z, /Z , )  
v /c ,  + 2gz-1 

Fn = - 

Since the first waves are go and Fo it follows thatf, = 0 , g- ,  = 0 and F-, = 0. 
Let us first examine the waves immediately after the impact, that is for n = 0 

- v /c ,  

( 1  + Z,/Z,)  

czz2 (1  + ZI/Z2) 

(6.34) 

Po = - C l Z ,  Vlc, ('6.35) 

gb = 

and for n = 1 
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v z,/z, (ZJZ,  - 1) 

c2 (1 + Z,/Z,) (Z,/Z, + 1) 
F', = - (6.36) 

-2v/c, 

(1  + Z,/Z2) 
(6.37) 

If Z ,  is less than or equal to Z2 then F', is zero or negative. This means that the strain is 
zero or positive, that is tensile. Because a tensile strain is not possible at the interface the 
contact is terminated, the contact time being 2L/c,. 

f i = g b =  

The velocity at the interface is 

v = V + c,gb = c,Fb 

(6.38) 
ZJZZ 

(1 + z,/z2> 
= v  

In the special case when Z ,  = Z,, v = V/2. Figure 6.1 1 shows the progress of the wave. 

mine the wave functions. With a little algebra it can be shown that 
z, - z2 

2c z, + z2 

If  Z ,  is greater than Z2 then equations (6.32) and (6.33) can be used repeatedly to deter- 

g:, = v [ 1 - ( ) n + i ]  (6.39) 

and 

T: 

Fig. 6.1 1 
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ZIYlC, z, - z2 
(6.40) ( z, + z2 r F, = 

ZI + z2 
so that the force transmitted is 

(6.41) 

from which we see that force decays exponentially. Also the velocities decay to zero so the 
coefficient of restitution, defined in the usual rigid body way, is zero. In the case where the 
two bars have the same properties and the second bar is the same length as the first the coef- 
ficient of restitution is unity, showing that this quantity can range from 0 to 1 even though 
the process is elastic. 

z, vz, z, - z2 Il ( ZI + z2 1 (EA)2F L = 
ZI + z 2  

6.7 Constant force applied to a long bar 

We shall now consider a long bar under the action of a constant force X applied to the face 
at x = 0 as shown in Fig. 6.12. If we assume that a wave travels into the bar with a speed c 
then we may use 

force = rate of change of momentum 

d 
dt 

X = - ( ~ A v  (et)) = ~ A V C  

so 
- E  = X/(AE) = pVdE 

By definition 

- E  = vt I (et) = vlc 

Equating the two expressions for E gives 

pvclE = v/c 

or c2 = Elp as before. 

Fig. 6.12 
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Now let the bar be of finite length L,  as shown in Fig. 6.13. At x = L the strain has to be 
zero. Therefore at any time 

E = -f, + gk-, = 0 

S:-1 = f n  

or 

At x = 0 the force, X ,  is constant and therefore 

X = -EA ( --rn + gl) 
= EA ( f r z  - A-1 1 (6.42) 

and 

v = c ( f n  + gl) 
= c ( f n  + f n - J  (6.43) 

From equation (6.42) 
X 

f = -  
n EA + A-I 

Thus 
X 

o EA 
f = -  

X 2x 
f1=,,+f,=- EA 

A = EA 

Hence 
(n + l ) X  

Substituting into equation (6.43) 
(n + 1)X nX + - I  EA 

v = c  ( 
EA 

CX 

EA 
- -  - (2n + 1) 

P A E  

Fig. 6.13 
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now time t = n2LIc so the average acceleration is 
v c x  C 
- (2n + 1) - 

t EA 2nl 
_ - _  

X 
PAL 

- - -  ( I  + 1/2n) 

As n tends to infinity 
v x  
t PAL 
- - - -  

So we see that the result is that which would have been given by elementary means. From 
this we learn the very important lesson that rigid body behaviour may be assumed when the 
variation of force is small compared with the time taken for the wave to traverse the body 
and return. After a few reflections the body behaves like a body with vibratory modes super- 
imposed on the rigid body modes. 

The wave method is most suitable when dealing with the initial stages which, in the case 
of impacting solids, may well be when the maximum strains occur. As mentioned earlier a 
vibration approach will require a large number of principal modes to be included. 

6.8 The effect of local deformation on pulse shape 

In the previous analysis for which impact occurred between plane surfaces it is seen that the 
leading edge is sharp leading to instantaneous changes in strain and velocity. Although these 
are not precluded in continuum mechanics, in practice some rounding of the leading edge 
occurs largely due to the impacting surfaces not being plane. We shall assume that in the 
immediate vicinity of the impact point the material behaves as an elastic spring with linear 
or non-linear characteristics. 

Referring to Fig. 6.14 we see that the impacting surfaces are convex and the separation of 
the two reference planes is denoted by (so - a), a being the compression. It is assumed 
that the compressive force deflection law is of the form X= ka". 

The rate of approach of the two reference planes is 

a = Y + c,g' - CJ (6.44) 

and the contact force 

X = -(EA),g' = +(EA)# (6.45) 

Fig. 6.14 
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Eliminating g' andf we get 

xc, xc, m a = V - - - - = V - ka (l/Zl + l/Z2) 
( E 4  (E42 

(6.46) 

Let h = k(l/Z, + l/&) so that equation (6.46) becomes 

a + ha" = V (6.47) 

If m = 1 then the interface behaves like a linear spring and the solution is, with a = 0 
at t = 0, 

and 

(1 - e") 
ZlZ2 

4 + z2 
= v  (6.48) 

from which we see that the maximum force is as given by equation (6.41) with n = 0. 
The Hertz theory of contact for two hemispherical bodies in contact states that 

where R is the radius and p = (1 - u)/(xE). (u = Poisson's ratio). We may write 

x = ka3'2 

where 
-1  3 x  

k = [ 4 (PI + P2)\ ($, + i2)] 
Equation (6.47) now becomes 

6 + ha3/' = v 
or 

Using the substitution 

leads eventually to 

(6.49) 

(6.50) 

2 1  213 + p + 1  2p + 1 

I = - - ( ! )  3 v  h [ i l n ( 7 1  - 
) - , 3  arctan( T)  +'$](6.51) 

Now 
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x = h 3 ’ 2  = - kV p 3 

h 
and because as p + a, t + 1 ,  

V 
X,, = kVk = (6.52) (l/Z, + l/ZJ 

Thus 
X - = p3 

XI, 
Introducing a non-dimensional time 

213 113 - 
t = t h  v (6.53) 

leads to a plot of NX,, versus 7 being made. Figure 6.15 shows the plot. Equation (6.53) 
can be rearranged as 

- t = (  2,2 r( 3 3 (  :) (6.54) 

and taking u = 0.3 the constant evaluates to 0.478. Note that from equation (6.52) X,, is 
proportional to V. 

3 ~ ( l  - u’) 

Also shown on Fig. 6.15 is a plot of - 
X/X- = (1 - e-‘) (6.55) 

and this shows a reasonably close resemblance to the plot of (6.54). Equation (6.55) is of 
the same form as equation (6.48) which was obtained from the linear spring model. Thus by 
equating the exponents an equivalent linear spring may be obtained. 

Therefore 

(6.56) 3 3  113 h , t = ? = h  v t 

or 

k,(l/Z, + l/ZJ = (k(l/Z, + l/Z2))z3 V1’3 (6.57) 

where k, and 1, refer to the linear spring model. 
Figure 6.16 shows a plot of the rise time to three different fractions of the maximum ver- 

sus the product of impact velocity and nose radius. It is seen that as the nose radius tends to 
infinity the rise time tends to zero as was predicted for a plane-ended impact. Also as the 
impact velocity (or the maximum force) increases then the rise time decreases. 

Fig. 6.15 
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Fig. 6.16 Rise time based on Hertz theory of contact 

6.9 Prediction of pulse shape during impact of two bars 

We shall consider the impact of two bars having equal properties. One bar is of length L 
whilst the other is sufficiently long so that no reflection occurs in that bar during the time of 
contact. If we assume a plane-ended impact then the contact will cease after the wave has 
returned from the far end of the short bar, that is the duration of impact is 2Llc. 

Because the rise time, in practice, is finite several reflections will occur before the con- 
tact force reduces to zero and remains zero in the long bar. The leading edge profile has been 
predicted in the previous section using the Hertz theory of contact where it was also shown 
that this could be approximately represented by an exponential expression. To simplify the 
computation we shall adopt the exponential form. 

Figure 6.17 shows the x, t diagram (which is similar to Fig. 6.10). 
At x = -L, E = 0 and thus 

f n  - gb-, = 0 

or 

f n  = gb-1 &'-I = O )  (6.58) 

At x = 0 the difference in the velocity of the reference faces is a, 

( V  + CA + Cg;) - c F ~  = a,, 

or 

VJC + f n  + g:  - Fi = U,/C (6.59) 

Also, by continuity of force, 

-(EL4g', - EAfn) = -(-EAF;) = ka, 
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Fig. 6.17 
or 

k 
X - g :  = g a n  (6.60) 

and 
k 

EA 
F:, = - a, (6.61) 

Adding equations (6.59), (6.60) and (6.61) gives 
V ci, 2k 
- + 2f, = - + - an 
c c EA 

(6.62) 

From equations (6.58) and (6.60) 
k 

f n  = g' = f - - a,,+l 
n- '  EA n- I 

As fo = 0 
k 

f ; = - -  
EA a' 

and 
k k 

f; = f; - E a,  = - - (a0 + a,) 

f n = - E C  a, 

EA 
so 

(6.63) 
k n-' 

0 

Substituting equation (6.63) into equation (6.62) gives 



.PDrediction ofpulse shape during impact of two bars 143 

V 2k 1 dun 2k 
- - - Ea, = - - + - a,, 

c dt EA c EA 

We define the non-dimensional quantities 
0 

- 2kc 
a = a -  

EAV 
and 

- 2kc 
t = t  - 

EA 
Thereby equation (6.64) can be written as 

n - l  _- 

(6.65) 

(6.66) 

(6.67) 
0 

As C has to be continuous 

t i n  (0) = t i n - 1  @I (6.68) 

The parameter p is the value of 7 when ct = 2L, that is the time at which the wave in the 
short bar returns to the impact point. 
From equation (6.66) 

4Lk 
P = E  

- 
Multiplying equation (6.67) by e' gives 

d n-  I 

e;(l + E;,)= e; (3 + ti,,) = (e' a,,) 
0 

and integrating produces 
- - n- l  - a,, = e-' [ J e' (1 - 5 d i ,  ) d'i + constant] 

Carrying out the integration - - - 
a. = e-' [ J e' (1 - 0) dI + constant] - -  - 

= e-' [e '  - 11 = (1 - e-') 

(the constant = 1 as Go = 0 when i = 0) - - - - a ,  = e-' [ J e' [ 1 - (1 - e-')] d? + constant] 

(6.69) 

(6.70) 

(6.7 1) 

- 
= e-' [ I  + tio@)] (6.72) 

the constant being determined by the fact that G I  (0) = Eo@). Continuing the process - - -  - 
a, = e-' [ J e' (1 - e-' [e '  - 1 + 'i + Eo@)]} dI + constant] 

- -2 t = e-' [ e ' - e-' + I - - - I - ti@) +constant] 
2 

- -  
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-2  

= e-‘ [ - t + 7 [1 - ~ ~ ( p ) ]  + ~ ~ ( p ) l ]  (6.73) 

In the same way the next two functions may obtained; they are 
-2 t 
- [2 - &@)I + 7 [ l  - &(p) - zl(p)] + &(p) ] (6.74) a 3 = e  - -  -: 1 ?’ 

- 
6 2  

and 
- 4  “ 3  -2 - t t t 

a4 = e-‘ [- - + - [3 - iio(p)l + T [3 - 2ii0(p) - t i , (p) l  

+ 711 - Eo(P) - 6 ( P ) 1  - 6 ( P )  + G d P j  

24 6 

(6.75) 

Figure 6.18 shows the results of the above analysis. This figure should be compared with 
Fig. 6.19(a) and (b) which are copies of actual measurements made on a Hopkinson bar. 

The Hopkinson bar is a similar arrangement to that described above. In the above case the 
contact force can be deduced either by measuring the strain ( E )  by means of strain gauges 

7 = t K (  I ,  + In, ) 

I 

p = tiww of arrival offirst reflectionjvmfiee endof the 
impacting baz 

Fig. 6.18 Pulse shapes for varying lengths of impacting bar 

(a) 

Fig. 6.19(a) Measured pulse shapes showing variation with bar length 
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&) 

Fig. 6.19(b) Measured pulse shapes showing variation with V 

sited away fiom the reflecting surfaces of the long bar, or by measuring the acceleration at 
the far end of the long bar and integrating to obtain the velocity (v). The contact force is 
given either by X = -&A or by X = (v/c)EA. 

By measurements on the impacting bar it is possible to deduce the compression across the 
contact region and thereby obtain the dynamic characteristics of that region or of a speci- 
men of other material cemented there. This is particularly useful for tests at high strain rate 
where the bars can be sufficiently long for the reflected waves to arrive after the period of 
interest. 

6.10 Impact of a rigid mass on an elastic bar 

In this example the impacting body is assumed to be short compared with the bar but of 
comparable mass. The reflections of the strain waves in the body are assumed to be of such 
short duration that a rigid body approximation is practicable. figure 6.20 shows the relevant 
details; for this exercise the far end of the bar is taken to be fixed. 

At the far end the particle velocity is zero and thus when x = L 

v = cyn + cg;+, = 0 

or 

g: = L-I (6.76) 

At x = 0 the contact force is 
a‘u 

at 
X = -(-EAYn + EAg;) = - M T  = -M(c2fl + c’g:) 

Let 

EA - PAL - CI 
Mc2 ML L 
_ - - - -  

Therefore 
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Fig. 6.20 

p -  P E +  i f n  -E-I -EA- ‘  

- E-I - i A-1 - ( eHL f n  ) = ep’L 

Multiplying by eKIL we get 

( ” d 
dz 

Integrating gives 

P A = e - ~ / L ~ e ~ ~ ( ~ - ,  - - - ~ - , ) c i z  + B n ]  

where B, is a constant of integration. 
Asf-, = 0 the first hnction is 

(6.77) 

yo = e-@‘ (0 + Bo) 

v = G (0) = ceo(Bo> = Y 

f = - e-’l;’L 

When z = 0, v = V and therefore 

ThusB,, = V/c and 
V 

(6.78) 

This finction is valid until the wave returns from the far end, that is, when z = 2L or t = 2L/c 
at x = 0. 

0 
C 

For t > 2LJc 

f, = e-P’L [ J e’lLIL ( -E e-’li/L - - pve-p/L ) d~ + B,  ] 
Lc Lc 

- - e-@‘ [ - - 2pvz  + B, ] 
L C  

Now the velocity must be continuous at x = 0 so that 
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c C 

and hence 

(6.79) 

(6.80) 

The same procedure can be employed to generate the subsequent functions. The results 
for the next two are given below 

V [ - !! (4 + 2e-”) z + 2 (f rz2 + B2 ] 
L f 2  = - 

C 

where 

and 

(2 - 4p) + 312 f 3  = - e-’LL’L - - 2p [ -4p+ 

c [ L e  

(6.81) 

(6.82) 

where 

B, = e-6p + e-4’ (1 - 8p) + e-’’’ (1 - 8p + 8p’) + 1 

At the impact point, x = 0, the velocity and the strain are given by 

vo = cfn + Cg; = C(fn - A-1) (6.83) 

and 

EO = - f n  + gl = -K + A-1) (6.84) 

At the fixed end the velocity is zero but the strain is 

EL = -fn +gh+l = -2fi (6.85) 

Figure 6.2 1 gives plots of these functions versus time. It is apparent from the graphs that the 
highest strains occur at the fixed end at the beginning of the periods, that is for z = 0 and x 
= L. Figure 6.22 gives a plot of the maxima versus Up. 

As the ratio of the impacting mass to that of the rod increases it is possible to use an 
approximate method to determine the maximum strain. It is well known from vibration 
theory that a first approximation in this type of problem is to add one-third of the mass of 
the rod to that of the end mass. For this case we equate the initial kinetic energy with the 
final strain energy 
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Fig. 6.21 

Fig. 6.22 Maximum strain at x = L for various period numbers, n 

1 2 1 2 1 X’L 
- (M + pAL/3) V 

1 1 

2 2 

= - - = - - 
2 2 k  2 E A  

= - EALE’ = - C’PALE’ 

Hence 

1 ‘I’ V M + pALl3 
E = -  ( 

- e o l + j  1 
C PAL 

Y 1 1 ‘ I2  

- 

where p = pALIM. 

by adding the result obtained in the previous analysis, which was that the initial strain is Vlc. 
Therefore 

This is adequate for large values of 1/p but not for small. A better approximation can be made 
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E = -  c [ l + ( i + j )  ] (6.86) 
V 1 1 ‘I2 

A plot of this aproximation is included on Fig. 6.22. 

6.1 1 Dispersive waves 

Let us first discuss the sinusoidal travelling wave. The argument for a sinusoidal function is 
required to be non-dimensional so we shall adopt for a wave along the positive axis 

2 = k(ct - x) 
= (ckt - kx) 

where k is a parameter with dimensions lllength. 
A typical wave would be 

u = UCOS (ckt - kx) (6.87) 

Figure 6.23 shows a plot of u against t for x = 0. If the argument increases by 21r, the time 
is the periodic time T. Thus 

ckT = 21.r 
or 

ck = 2 d T  = 2 7 ~ ~  = o 

where u is the frequency and o is the circular frequency. 

responds to a change in x of one wavelength h. Thus 
Figure 6.24 is a similar plot but this time versus x. An increase of 21.r in the argument cor- 

kh = 2n (6.88) 
or 

k = 2 d h  (6.89) 

k is known as the wavenumber. 

Fig. 6.24 
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Hence 

and 
z = ckt - kx = at - kx (6.90) 

0 
e = - =  (6.91) 

This quantity is called thephase velocity as it is the speed at which points of constant phase 
move through the medium. In a dispersive medium cp varies with frequency (or wavelength) 
and it will be shown that this is not the speed at which energy is propagated. 

Consider now two waves of equal amplitude moving to the right as shown in Fig. 6.25. 
Note that both arguments are zero for t = 0 and x = 0. The displacement is 

k cp 

u = UCOS (o,t - klx)  + U COS (o,t - klx) 

and using the formula for the addition of two cosines 

kl - 2 k2 x i x ) cos ( "I ; O2 t -  
kl + k2 

t -  
2 

A6.l 

2 
(6.91a) 

Aw 2 ) = ucos (wot - k,x) cos ( - t - - k 
( w' : a* u = ucos  

Fig. 6.25(a) and (b) 
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where the suffix 0 refers to a mean value and A signifies the difference. Figure 6.25b shows 
the plot of equation (6.91a). The individual crests are still moving with a phase velocity 
a&, but the envelope curve is travelling at a speed AaolAk,  which is known as the group 
velocity, cg. If the two frequencies are very close together then, in the limit, 

(6.92) 0 0  
phase velocity cp = - 

k0 
and 

d o  
dk 

groupvelocity cg = - (6.93) 

A graph of o versus k is called the dispersion diagram. For a non-dispersive wave o is pro- 
portional to k so that cp and cg are identical constants. For the dispersive wave there is a h c -  
tional relationship between o and k and it is found that the gradient can be negative as well 
as positive; also the curve need not pass through the origin. Figure 6.26 shows a typical 
curve. 

To reinforce the concept of group velocity consider a packet of waves with frequencies in 
a narrow bandwidth on the dispersion diagram. The bandwidth is narrow enough for the gra- 
dient to be constant. Thus in this region the gradient is 

0, - "0 - 
k, - 4 cs - 

or 

0, = c,(k, - 4 3 )  + wo (6.94) 

Now a typical wave in this region is 

u = U, COS (o,t - k,x) 

Substituting from equation (6.94) gives 

u = U, COS { [cg (k, - ko) + o0 3 t - k,x } 
= U, COS [ (ao - cgko) t + k, (c,? - X) ] (6.95) 

This equation represents a wave moving to the right with a phase velocity cp = o , / k , ,  
which will only vary slightly over the narrow frequency band. 

Fig. 6.26 
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If we change our origin so that x = c,t, which is equivalent to moving along the x axis at 
the group velocity, then equation (6.95) becomes independent of the wavenumber k, (and of 
the frequency 0, )  and we can then sum for any number of waves within the frequency band 

u = z u, cos [ (wo - c,kJ t ] 

= ( 7  U,>COS[(@O - cgk0)tI 

= ( 7  v, 1 cos [ (cp - cg) (aolcp) t 1 (6.96) 

Thus if we move along the x axis at the group velocity we see a constant amplitude, which 
is the envelope curve, with the displacement varying at a frequency which depends on the 
difference between the phase and group velocities. 

In this example the group velocity is shown as greater than the phase velocity so the indi- 
vidual peaks will be seen to retreat within the envelope curve. This is displayed in Fig. 6.27. 

If there is a short-duration pulse then the frequency band is wide; a simple rule is that the 
product of bandwidth (in hertz) and pulse duration (in seconds) is approximately unity. Let 
us assume that the pulse is represented by a sum of sinusoids 

(6.97) 

At c = 0 and x = 0 all displacements are additive, and the pulse is symmetrical about both 
the time and the space origins. The amplitudes V, are functions of the frequency (and 
wavenumber). The functions depend on the shape of the pulse and are given by standard 
Fourier transform techniques. We seek the peak of the pulse therefore at the peak 

u = E V, cos (w,c - k,x)  

(6.98) 
a U  - -  - C q k ,  sin(o,t - k,x) = 0 
dX 

Fig. 6.27 
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In the neighbourhood of the peak and for small dispersion the argument of the function will 
be small so that sin z may be replaced by z. This gives 

t C U,k,a, = x Z U,kf 

Hence the velocity of the peak will be 
x CU,k,a, 

t ZU,kf 
If U is a continuous function of k then 

J," U(k)ko(k)dk 

(6.99) - -  c p p - - -  

(6.100) - 
cpp - J? U(k)k'dk 

where k,,, is the value of k when o = the bandwidth, that is cor = 2n. 
The quantity cpp will be known in this book as the pulse-peak velocity. The expression for 

pulse-peak velocity is only meaningfkl if the dispersion is moderate, otherwise the pulse 
will be changing rapidly and no distinct peak will be observed. Since the amplitude appears 
in both numerator and denominator small variations will have little effect. This is borne out 
by Figs 6.28 and 6.29 where the curves for a square pulse and triangular pulse are seen to 
be very close together. 

Figure 6.28 shows the three wave velocities versus k for a concave downwards dispersion 
curve. Here the group velocity drops quickest and eventually becomes negative, the curve 
for phase velocity dropping less quickly. The plots of pulse-peak velocity for a square pulse 
and for a triangular pulse are shown but on the scale of the diagram the difference is not 
measuiable. Figure 6.29 shows a similar plot but in this case the dispersion curve is concave 

CPpi pulsepeak velocity, triangularpulse 

c m ~  pahe peak velocity, mctanplar pulse 

Cp phasevelocity cg pupvelocity 

Fig. 6.28 Wave velocities for negative curvature dispersion curve 
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Fig. 6.29 Wave velocities for positive curvature dispersion curve 

upwards. It is conventional to plot the curves with k as the independent variable because o 
is univalued for a given k, but not vice versa. 

Figure 6.30 shows four symmetrical pulse shapes and their respective Fourier transforms. 
The ordinate is the square of the amplitude as this gives a measure of the energy and it is 

Fig. 630 Fourier transform pairs 
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seen that most of the energy is accounted for before the abscissa value reaches x .  This gives 
credence to the approximations r/T, = 1 and L/h, = 1. 

The practical difficulty is the determination of the width of the peak and hence the appro- 
priate value of k,,,. Measured values tend to be towards the phase velocity but are far from 
the group velocity. Although the pulse-peak velocity is as precisely defined as the other two 
it does emphasize the fact that the group velocity is valid only for a narrow frequency band. 
In a highly dispersive situation the group velocity gives the arrival time of specific wave- 
lengths which were generated by an impact. 

Dispersion indicates that short pulses will spread out but the total energy remains con- 
stant. The term is not to be confused with dissipation in which some of the mechanical 
energy is converted to thermal energy. 

6.12 Waves in a uniform beam 

In this section we shall be examining lateral waves in a long uniform beam, shown in Fig. 
6.3 1, with a cross-sectional area A and a second moment of area Z about the z axis through 
the centroid. The xy plane is a plane of symmetry. The material has a Young’s modulus E, a 
shear modulus G and the density is p. We are going to use Hamilton’s principle to obtain 
the equations of motion because it is easier to modify the model. The exact equations are 
very involved and therefore approximations are required. 

A first approximation is to consider only kinetic energy due to lateral motion and strain 
energy due to bending strains. Later we shall include rotary inertia and shear strain energy. The 
simple case can be obtained by free-body diagrams and Newton’s laws but we shall use the vari- 
ational method and subsequently modify the Lagrangian to take into account the extra terms. 

Refemng to Fig. 6.32 we can write an expression for the kinetic energy (note that in this 
section v is the deflection in they direction) 

TI =soy (4 dr (6.101) 
L p ~  av ’ 
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Fig. 632 

and for the strain energy 

L~~ a0 z 
V , = S , 1 ( 3 +  (6.102) 

If we assume that there are no external forces Hamilton’s principle states that 
t 2  

6 J (TI - Vl)dt = 0 
tl 

or 

2 
t2 L 

pA aV 2 EI 80 
6 1  s[ -T(z 1-1 (dx) I d r d t = o  

(6.103) 
0 

tl 

Carrying out the variation first 

L t 2  / , I t  [ P A  g 0 ( g  ) - EI;  0 ( z )  dxdt = 0 
(6.104) 

I 

For the first term we reverse the order of integration and integrate by parts to obtain 

L t 2  t 2  t 2  / [ It pA z 6 ($) dt ] dr =IL[  pA$ 6v I t  -Itl$ 6v dt] dx (6.105) 
0 1  0 I 

Because GVvanishes, by definition, at t, and t2 the first term in the square brackets is zero. 

It ,  I [ EI E 6 ( z)] dx dt =I [ E I g  60 lo - 1; 2 60 dx] dt (6.106) 

For the second term we integrate by parts with respect to x to obtain 
t 2  L L  

12 L 

0 0 
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We have already assumed for this exercise that there are no external active forces. Therefore 
the end constraints must be workless and this implies that either 60 or a0lax must be zero at 
the ends. Hence the first term is zero. 

Combining the two results, equations (6.105) and (6.106), gives 

1; I,' ( EZ$ 60 - pA 

v and B are not independent but are related by geometry 
dV - -  - 0  
ax 

so that 
av 

60 = 6 ( dx) 

(6.107) 

(6.108) 

(6.109) 

Integrating the first term once more by parts and noting that the end forces are workless 
leads to 

and finally since 0 = avBx 

(6.110) 

Because 6v is arbitrary (except at t ,  and t2 where it is zero) the expression in the large paren- 
theses must be zero. Thus 

a4v d2V 
ax at 

EI-  + PA 7 = 0 (6.1 11) 

This equation is known as Euler 's equation for beam vibration and is widely used. This form 
can readily be deduced from free-body diagrams in a similar method to that used for longi- 
tudinal waves in a bar. The reason for using Hamilton's principle here is to expose the details 
of the method and to form the basis for development of a more refined model. 

We now add an extra kinetic energy term to take into account rotary inertia. For a thin ele- 
ment of beam the moment of inertia about a z axis through the centroid is pZ dx, where Z is 
the second moment of area. Therefore the kinetic energy is 

(6.112) 

Thus 
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t2 

(6.1 13) 

The rate at which the lateral deflection changes with x is now augmented by y, the shear 
strain, giving 

av 
ax 
_ -  - 0 + y  

and the additional strain energy is 

(6.1 14) 

(6.115) 

The constant K (kappa), which is greater than unity, corrects for the fact that the shear stress 
is not uniformly distributed across the cross-sectional area. For a rectangular cross-section 
K = 6/5; this is based on a parabolic shear stress distribution. Thus 

This time we shall not make the first term zero as we are now admitting external forces. 

vention is used) 
From Fig. 6.3 1 the virtual work done by the external forces is (note that a vector sign con- 

(6.1 17) 6W = MI601 + MI602 + SI6vl + S26~2 

Therefore Hamilton's principle for the modified model including external forces is 

t 2  

tl tl 
6 I f i (q + T2 - VI - V2) dt + GWdt = 0 (6.1 18) 

Using equations (6.105), (6.106), (6.1 13), (6.1 16) and (6.1 17), equation (6.118) may be 
written 

J: Ji { [ -PAY,,  + KGA(v, - 0.~1 dv . . . 

+ [ -pI0+,, + EI0, + KGA(v, - 0)]  60 } dxdt . . .  

(6.1 19) 

Here the notation a2vldx' = v, etc. is used. 

double integrals must each equate to zero. Thus the two equations of motion are 
Because 6v and 60 are arbitrary between I ,  and t2 the factors of 6v and of 60 under the 
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and 
2 

2 

(6.120) 

(6.121) 

Summing each of the coefficients of 60,, 60,, 6v, and 6v2 to zero gives the boundary conditions 

( E I  g ), = -MI 

(EZ )2 = M2 

au 
KGA ( dx - 0 )  = -VI 

I 

au 
KGA ( dx - 0 )  = -V2 

2 

(6.122) 

(6.123) 

(6.124) 

(6.125) 

It is now possible to eliminate 0 between equations (6.120) and (6.12 1). Equation (6.120) 
can be written as 

2 2 
V.lf - KC, V-cr KC, 0, = 0 

Therefore 
1 

0, - v.u - - 2 VJI 
KC, 

- 

Equation (6.12 1) is written as 

and differentiating partially with respect to x gives 

(6.126) 

(6.127) 

or 

This is known as the Emoshenko beam equation. 
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For a running wave solution 
v = ;d(ar - W 

so substituting into equation (6.128) and dividing through by the common factor gives 
1 2 

o4 = 0 (6.129) 

which is the dispersion equation for bending waves in a uniform beam. This equation is a 
quadratic in o2 and therefore yields two values of o for any value of k. The lower of the two, 
the first mode, approximates to Euler's equation for small values of k (k c 0.2, i.e. wave- 
lengths longer than about five times the beam depth). 

Plots of a, cp and cg are shown in Fig. 6.33. The phase velocity tends to a maximum value 
which is close to the velocity of pure shear waves (see section 7.5). The group velocity also 
tends to the same value but passes through a maximum for wavelengths of the order of the 
depth of the beam. It follows that after a short-duration impact these wavelengths are the 
first to arrive at a distant point but most of the energy will follow at longer wavelengths. The 
model becomes invalid when the wavelengths are very short compared with the depth of the 
beam in which case the wave speed will tend to that of surface waves which have a speed a 
little less than the shear wave speed. 

Figure 6.34 is a similar plot but for the higher, or second, mode. It is seen that there 
is a minimum frequency; below this no travelling wave is possible in this mode. The 
consequence of this is that the phase velocity tends to infinity at very low wavenum- 
bers but the group velocity remains finite and less than c,. The validity of this mode is 
not as good as the first mode and is probably only witnessed in I-section beams where 
the end load is camed mainly by the flanges and the shear is carried mainly by the 
web. 

c',k ' 4  - - 1 2  0 - (  1 +$)02k2+o 
(I/A 1 

Fig. 633 Uniform beam mode 1 
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Fig. 6.34 Uniform beam mode 2 

6.13 Waves in periodic structures 
The type of structure envisaged here is the continuous mass-spring system shown in Fig. 
6.35. Away from any boundary we can use the same form of expression for displacement as 
used in the earlier sections but in place of the continuous location x we have a discrete num- 
ber of locations n. The mass of each body in the system is m and the stiffness of each spring 
is s. For the nth body the equation of motion is 

S ( U , + ~  - u,) - s ( u ,  - n , - , )  = mu, (6.130) 

Let us assume 

(6.13 1) 

Substituting equation (6.13 1) into equation (6.130) and dividing through by the common 
factor Ue'" we obtain 

u, = (,r&"' - kn) = ue'" e - J h  

- e-Jkn) - s (e-Jh - e-Jhn-l)) = -mI1zoze-Jh 
s (e-JMn+1) 

(e-Jk - 1) - (1 - e'') = - mw'/s 

Dividing further by KJh gives 

and as 

e*Jk = cosk fj sink 

Fig. 6.35 
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we get 
2 

2 COS (k) - 2 = - - mw 
S 

or 
2 

2( -2 sin2 (W2)) = - = 
S 

giving 

o = 21 (s/m) sin(W2) (6.132) 
Figure 6.36 is a plot of the dispersion diagram. From this we see that there is a cut-off fie- 

quency, a,, = 2J (slm), above which no continuous wave will propagate. At this point k = 
X SO 

1( = vi@ e-jnn = vi" (-1)n 

that is, each body is in phase opposition with its neighbours. 
The phase velocity is 

0 sin (k/2) 
k k/2 

c p - - -  - - J (s/m) (6.133) 

and the group velocity is 
d o  

g d k  
c = - =  J (s/m) cos(W2) (6.134) 

If we impose a vibration above the cut-off frequency then one solution is to assume that 
each body has the opposite phase to its neighbour and that the amplitude decays exponen- 
tially, 

(6.135) U" = U(- 1)" e" e-Kn 

Substituting equation (6.135) into equation (6.130) leads to 

o = 2J (dm) cosh (k'/2) (6.136) 

for o > oca. Here the disturbance remains local to the point of initial excitation and does not 
propagate; such a mode is said to be evanescent. 

Fig. 636  Dispersion diagram for mass-spring system 
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6.14 Waves in a helical spring 

The helical spring will be treated as a thin wire, that is plane cross-sections remain plane. 
This assumption has been shown to be acceptable by mechanical testing. An element of the 
wire has six degrees of freedom, three displacements and three rotations, so the possibility 
exists for six modes of propagation. If the helix angle is small these modes separate into two 
groups each having three degrees of freedom, one set consisting of the in-plane motion and 
the other the out-of-plane motion. The effect of helix angle will be discussed later but here 
we shall develop the theory for out-of-plane motion for a spring with zero helix angle. This, 
as we shall see, is associated with axial motion of the spring, that is with the spring being 
in its compression or tensile mode. 

Figure 6.37 defines the co-ordinate system to be used. The unit vector i is tangent to the 
axis of the wire,j is along the radius of curvature directed towards the centre and k com- 
pletes the right-handed triad. For zero helix angle k is parallel to the axis of the spring. The 
radius of curvature is R and s is the distance measured along the wire. 8 is the angle through 
which the radius turns. Thus 

d s = R d e  (6.137) 

First we shall consider the differentiation of an arbitrary vector V with respect to s 

(6.138) 

where the prime signifies differentiation with respect to non-rotating axes and SZ is the rate 
of rotation of the axes with distance s. Thus 

- - - -  d ’ V +  R x V d V  
d s d s  

de de 
d s d s  

R = - = - k  

and using equation (6.137) 
1 
R 

Q = - k  (6.139) 

Fig. 637 
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From equation (6.138) the components of the derivative are 
dV, d'V,. 1 
ds ds R '  

- - - - - -  

or in matrix form 

where 

p -1lR 0 

O O P  
and 

d' 
p ' d s  

(6.140) 

(6.141) 

(6.142) 

(6.143) 

(6.144) 

(6.145) 

A cross-section has a displacement u and a rotation 0 from its equilibrium position. The 
spatial rate of change of u is due to stretching and shearing of the element of wire and also 
to rigid body rotation, so the strain 

(4 = [TI1 (u) - [ @ I X  ( W I d s  

= [TI1 (4 + [d9/WX (0) (6.146) 

Now (ds) = (ds 0 0) and therefore 

0 0 0  

0 0 - 1  
ds M=l 0 1 0  

= [T21 

(see appendix 1) 

The components of strain are, therefore, 

axial strain 

shear strain 

shear strain 

= pui - ujlR 

= puj + u,lR - 0 k  

&k = puk + 0j 

These are related to the elastic constants by 

(6.147) 

(6.148) 

(6.149) 

(6.150) 
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Pi 
E .  = - 
' EA 

(6.151) 

(6.152) 

(6.153) 

where q is a factor to allow for the shear stress distribution not being uniform. A typical 
value for circular cross-sections is 0.9. 

The relationship between the elastic constants, Young's modulus E, shear modulus G and 
Poisson's ratio u is E = 2G(1 + u) , so let 

Combining equations (6.148) to (6.154) 

Pi = GA (2mpui - 2mujlR) 

Pi = GA (VU, + p i I R  - 903 

pk  = GA (qPuk + q O j )  

(6.154) 

(6.155) 

(6.156) 

(6.157) 

For bending we use the usual engineering relationships for bending and torsion of shah .  If 
the shape of the cross-section has point symmetry then with J being the polar second 
moment of area 

4 = Ik = Ii/2 = J12 

Also E = G2m so that E4 = EIk = mGJ, and therefore 
d0; 
ds Mi = GI; - = GJ@0;  - B~IR) (6.158) 

(6.159) 

(6.160) 

The equations of motion can be derived with reference to Fig. 6.38. Resolving forces act- 
ing on the element, neglecting any external forces, 

a or, letting D = - 
at 
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Fig. 638 

or 

U,l (PI = PAD2@) (6.161) 

The component equations are 

PP, - P,IR = ~AD'U, (6.162) 

pp, 4- P,/R = pAD2Uk (6.163) 

PPk = pAD2Uk (6.164) 

Now considering moments about the centre of mass of the element 

(6.165) d(M) a@) ( (M) + ___. ) - (M) + (W"P) = 7 
ds, = constant 

where (L) is the moment of momentum. For small rotations 

(L)  = pJdsD0, (6.166) 

and [ : z k ]  

d(') ds + (&)"P) (6.167) - = pJD2 [ z): ] ds = - 

pM, - M,IR = pJD'0, 

pM, + M,IR - Pk = pJD20,I2 

phfk + P, = @0,/2 

a(L) 
at &=co"stant 

The three component equations are, after dividing by ds, 
(6.168) 

(6.169) 

(6.170) 

Substituting the six equations of state ((6.155) to (6.160)) into the equations of motion 
((6.162-6.164) and (6.168-6.170)) will yield six equations in the six co-ordinates and these 
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will separate into two groups of three. So, substituting equations (6.157), (6.158) and 
(6.159) into equations (6.164), (6.168) and (6.169) leads to 

m 
R 

GJ(p2g - p0,IR) - GJ-  + 0JR) = pJD20, (6.171) 

GJ 
R GJm b 2 D j  + p0/R)  + - (PO, - 0,IR) - qGA (pup + oj) = pJD28j/2 (6.172) 

qGA (p2up + pBj) = pAD2Uk (6.173) 

It is convenient for discussion purposes to put the above equations into non-dimensional 
which contain only the three out-of-plane co-ordinates. 

form. To this end we define the following terms 

(6.174) 

up E Up/R (6.175) 
- m  
D E -  (6.176) 

c2 

Thus equations (6.17 1) to (6.173) may be written in matrix form as 

-$(I + m )  0 
(mF2 - 1 - a q )  2 -qa2j ][ i k ]  = E ' [  t] (6.177) 

4p" 9 j 2  
(Note that this matrix equation can be written in symmetrical form; however, we can discuss 
the manner of wave propagation just as well in the current form.) 

In a manner similar to previous cases we shall assume a wave travelling along the axis of 
the wire. Thus 

(6.178) 0, = 0,  e 
(6.179) 0 1 -  J 

up = GkeJ("'-k') (6.180) 

p"0, = R (-Jk)0, (6.181) 

J(0f - b) 

- 0' e ~ ( w f  - k,) 

Now 

and 
- R 

D B ~  = - (iw)oi 
c2 

with similar expressions for the other two co-ordinates. 
Let us define the non-dimensional wavenumber 

K =  Rk 
and the non-dimensional frequency 

(6.182) 

(6.183) 

(6.184) 



(w' - m - K ~ )  jK(1 + rn) 0 
2 -jK(l + m )  ( X w '  - 1 - a2q) -qjKa 

0 - sjK (W2 - qKZ) 

Fig. 639 Dispersion diagram for helical spring 

(6.189) = o  
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Fig. 6.40 

For low values of wavenumber equation (6.189) reduces to 

(6.190) 

Now a2 =2R2/r2 for solid circular cross-section wire. The spring index (Rlr) is unlikely to 
be less than 3 so the minimum value of a’ is about 18; a more typical index of 5 gives a2 = 
50. Since q is of the order unity equation (6.190) is, to a close approximation, 

W’ = (Kla)’ (6.191) 

w2 = K2q 
1 + qa2 

Returning to the dimensional form 

k (6.192) 
c2 rc2 ~ = - k = -  
a R , 2  

from which the phase velocity and the group velocity are given by 

cp = cg = c2/a (6.193) 

This approximation is quite reasonable for wavelengths longer than five turns. Also 
shown on Fig. 6.40 are the amplitude ratios and it is interesting to note that although the 
strain associated with long wavelengths is torsional in nature there is very little rotation 
about the wire axis (0, + 0). This is true for the static case, represented here by zero fre- 
quency and infinitely long wavelength. 

The dispersion diagram shown is a plot of Wa versus K for a = 10 but on the scale used 
no difference is seen for a ranging from 3 to 30. 

The effect of the helix angle being greater than zero is to couple the in-plane and out-of- 
plane co-ordinates, but for small helix angle and low wavenumber the essential nature of the 
curves does not change. The more noticeable effect is around K = 1 where the curve is more 
rounded for the lowest longitudinal mode and the curve for the torsional mode no longer 
goes to zero. The two lowest dispersion curves are shown in Fig. 6.41 which also shows the 
results of mechanical steady-state vibration tests. Impact tests were also carried out from 
which the arrival times of various frequency components were measured and compared with 
the theory; some results are shown in Fig. 6.42. 
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HELICAL SPRING DATA 

Nmber  of turm 11.5 
Coilradius R 50.0 mm 
Wmradius r 12.5 mm 
Mlterial, steel EN 498 

Galcdatedjvm jidl theory 

Helix angle s" 

I k  (fi) 4 

U . . . . . . . 
Meanrredm.wmantjkpency, mode shqe  idmt@d. 

o 

e appmximatethemy 

Meanrred ~onant fhpency  .mode shape not ichtij%d. 

Fig. 6.41 Dispersion curve for helical spring (data from Ph.D thesis, H.R. Hamson 1971) 

In section 6.12 the dispersion diagram for a periodic massspring system was developed 
and shown in Fig. 6.36. The similarity with the lowest mode for the spring as shown on Fig. 
6.40 is quite noticeable. The numerical similarity is strong if in the lumped parameter model 
the mass and the stiffness of the components are those of a single turn of the spring. This 
model gives good agreement for wavelengths as short as one turn of the helix. 
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7 
Waves In a Three-Dimensional Elastic 

Solid 

7.1 Introduction 

All the examples of wave motion considered in Chapter 6 have been one dimensional, that 
is only one spatial dimension is required to define the direction of wave propagation. In the 
case of the helical spring the path of propagation is curvilinear, namely that along the wire 
axis. We now consider a homogeneous, isotropic, linearly elastic solid. The dynamics of 
such a solid are completely defined by three constants: the density and two elastic moduli. 
There are six elastic constants in general use: Young’s modulus E,  the shear modulus or 
modulus of rigidity G, Poisson’s ratio u, the bulk modulus K and the Lame constants h and 
p. Any two will do but we shall find the Lame constants the most convenient for this topic; 
these will be defined below. 

The methods used for the bars and beams were approximations but this is justified by the 
fact that the boundary value problem to the exact equations, which we shall develop, has 
only been solved for a limited number of cases. However, a knowledge of the propagation 
of plane waves in an infinite, and semi-infinite, solid provides much insight into the physi- 
cal nature of the phenomena previously studied. 

We shall develop the required equations in a compact, though complete, notation but the 
reader not familiar with three-dimensional elasticity should consult the appropriate texts. 

7.2 Strain 
Referring to Fig. 7.1 the point P is located at a position r and a nearby point P’ is located 
at r + dr. The displacement of point P is u and that of P’ is u + du. In terms of Cartesian 
co-ordinates 

d r  = dxi + dyj + dzk 



Strain 173 

- 
du, 

duv 

du; 
m 

- -  -I - au, 
h x  & 

h v  au, duy dy 

6% d u z  
d u z  & 

- - aU, 
dy dz 

. &  dY dZ 

& dY dz 

- 
& 

- (7.3) = - - 

- - - 
- I  -. - 



- -  - dub' a& 
d.7 dY 
dux a& 

2 dz dx 
du, dub' 

- 
-2 + - RX 

0, =r - - -  

dY ax L 

-- + 2 R* 
I -  

Fig. 7.2 

r - 
d 

dZ dY 
d 
dx 

0 

0 a d 

- d -- 0 

-- =1- d 
2 dz 

- -- 
dY dx 

m 

UX 

u,. 

u2 

(7.1 1) 

- -  - 
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or, in indicial notation, 

Qi = 7 1 ( -Uj .k  + Ukj )  (7.13) 

The elastic displacement will be the total displacement less that due to rotation, so 

(dulelastic = (dultaa~ - (du)rot (7.14) 

From Appendix 1 or by direct multiplication we have that 

(7.16) 

(7.17) 

The first term in the braces is given in equations (7.3) and (7.5) and the second term is its 
transpose, so half the sum of the two is a symmetric matrix which is the strain matrix [E]. 
Hence 

where 

Figure 7.2 shows the geometric definition of shear strain. 
In indicial notation 

1 E.. = + .  + u. .) 
!I 2 1 "  J.1  

(7.18) 

(7.19) 

(7.20) 

(7.2 1) 

Note that for i f j ,  
tensile strain. 

= $%, , that is half the conventional shear strain, whilst qi is the usual 
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7.3 Stress 
Figure 7.3 shows a tetrahedron with forces acting on all faces. The oblique face has an area 
An and is acted on by a force 

F, = ~ , i  + 4,j + F,J = (e lT(4)  (7.22) 
The area on which it acts is 

An = (e)'(An) (7.23) 
where 

(An) = (A,  Any An;)T = ( ~ . r  ~ . v  ~ z ) ~  

The force on the face whose outward normal is in the x direction is 

(4) = [;] = [;jA,. 
(7.24) 

where o,, is the conventional tensile stress and r? and r, are the conventional shear stresses. 
Similarly for the forces in the other two directions. 

The resultant force on the element is 
(4) + (F,) + ( E )  - ( E )  = p(ii)volume 

Using equation (7.24) we have 

0x.r ~1.r '5, 4 [;I 2 ;][4 - (4) = p(Wolume (7.25) 

The right hand side is proportional to length3 whilst the left hand side is proportional 
to length2, so as A ,  + 0 the right hand side becomes negligible. Hence, for small 
volume, 

(6) = [:: !; ::I[::] 
r,, T,z 0,; 4 

Fig. 7.3 
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or 
(4) = [ol(An) (7.26) 

where A, is a component of the area vector An and 

o.r* ‘5w ‘52.r 0.n oyx 0 2 ,  

‘5.r: ‘5,z 0;; 0x2 0, 0 2 ,  

[ol = [ ‘5v “? T?] = [% 0.; %] (7.27) 

is the stress matrix. 
The force vector is 

F, = ( e ~ ~ [ o ~ ( ~ n )  = (e)T~o~(e)(e)T(~n) (7.28) 

Note that (e)(e)T = [I] the unit matrix. 
The term (e)T[o](e) is the second-order stress tensor or dyadic. That is, it is the physical 

quantity which, when it premultiplies the area vector, gives the force vector. 
To show that the stress matrix is symmetrical consider an elemental rectangular volume 

as shown in Fig. 7.4. By taking moments about an axis through the centroid parallel to the 
x axis 

(dx’ + dy’) ii2 
(ovdrdz)dy - (o,,dydZ)dx = pdxdydz 

12 
In the limit as dx + 0 

OF - 0y.r = 0 (7.29) 

which demonstrates that [o] is symmetrical. 

Fig. 1.4 

7.4 Elastic constants 

From the definitions of Young’s modulus and Poisson’s ratio 

- 1  u u 
E %r - r 0, - z o>v - - 0 2 2  

(7.30) = [; + +]oxx + B3p u 
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where p = -(om + ow + o,)/3, the mean pressure. 
By definition of the bulk modulus, K, 

p = -KA 

where A = (E, + E . ~  + E=), the dilatation. Therefore equation (7.30) becomes 

or 

a,, = - E 3Ku A 
(1 + + - (1 + u) 

From elementary elasticity theory 

and 
E = 2G(1 + u) 

E - - 2G(1 + u) K =  
3(1 - 2 ~ )  3(1 - 2 ~ )  

which means that equation (7.33) can be rewritten as 
2Gu A a,, = ~GE, ,  + 

(1 - 2u) 
The Lame constants h and p are defined by 

on = 2pX. + hA 
from which it follows that by comparison with equation (7.36) 

and 
p = G  

2Gu h =  
( 1  - 2u) 

We also have 
T q  = GYP 

ory = 2 P E q  

oxy = 2Gyq/2 = ~ G E ,  
or 

It is now possible to write equation (7.37) in matrix form 

or 
[o] = 2 p [ ~ ]  + hA[Z] 

7.5 Equations of motion 

(7.3 1) 

(7.32) 

(7.33) 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

A small elemental volume is shown in Fig. 7.5. The resultant force due to the stresses act- 
ing on the faces with normals in the x direction is 
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- -  
a 

ax 

= [ 12 zz. 211 a aY 
a 

az 

- 

a,, ozy 0 2 :  

- 
L -  

volume 
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Equation of motion 
rom = P(f4 

kinematics 

dilatation A = (V)'(U) = (u)'(V) 

rotation (0) = [V]"(u) 1 

and the elastic relationships 
[o] = 2p[&] + hA[Z] 

Substituting equations (7.41) and (7.19) into (7.44) gives 

P ((W)' + (V>(4T))(V) + hA[II(V) = P(fi) 

cc (((v>T(w)'(v) + (V)'(V)(~)'(V))) + hA(V)'(V) = m'(a 
Now we premultiply by (V)' so that 

and using (7.32) 

p((A(V)'(V) + (V)T(V)A)) + hV% = pA 

or 

p (AV' + V'A) + hV2A = pA 

Hence 

(2p + h)V2A = pA 

In full 

ax ay2 az 

which has the form of a classic wave equation in three dimensions. 
This time we premultiply equation (7.45) by [VI" so that 

CI (([v1"(w7)' + [V1"(V)(u)T))(V) + A[VI"A(V) = P[VI"(ii) 

p(2R)V' + (0) + (0) = p(2ii) 

pV2(R) = p(ii) 

Using equation (7.12) and noting that [V]"(V) = (0) we get 

or 

Expanding we get three equations of the form 

(7.44) 

(7.19) 

(7.32) 

(7.12) 

(7.41) 

(7.45) 

(7.46) 

(7.46a) 

(7.47) 

(7.47a) 
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Again this is the form of a classic wave equation in three dimensions. 
The nature of the waves is best explored by the introduction of potential functions, one 

scalar function of position and one vector function of position. The functions are assumed 
to be defined such that 

(4 = (V)0 + [VI"(w) 
The dilatation is then 

A = ( V ) T ( ~ )  = V2(0) + (V)T[V]x(~) 

= V2(0) 
and twice the rotation 

= [Vl"(U) = [VIX(V)0 + EvI"~l"(w) 

(7.48) 

(7.49) 

= [v1"~1"~) (7.50) 
So we see that the dilatation is a function of the scalar function only and the rotation is a 
function of the vector function only. 

The wave equations can be written in terms of the potential functions. Equation (7.46) 
becomes 

(2p + h)v40 = p v 2 0  
so 

(2p + A)V20 = p0 
Similarly equation (7.47) becomes 

(7.5 1) 

~v2~v1"~1"(w) = P [ v l x ~ ~ l x ( w )  

[ v l x ~ ~ l x ~ v 2 ~ w )  = P[v1"~1"(\ii) 

pV2(w) = P(W) 

or 

Therefore 

Expanding equation (7.5 1) we get 

A solution to this wave equation is 
0 = f ( c t  - s )  

s = x  + y  + z  

where s is a line with components x, y and z. It follows that since 
2 2 2 2  

a0 as 
ax - =f,, = fl 

where I is the direction cosine between s and x. 
Similarly 

(7.52) 

(7.5 la) 

a0 
aY az 2 = fm and - = f n  

Substitution into equation (7.51a) yields 
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(2p + k)(l2 + m2 + n 2 r  = p ( c 2 r  

c = J [ ( 2 p  + k ) /p ]  

(u)  = (V)'0 

a0 
ax 

a0 
u,, = - 
. aY 

a0 
u; = - az 

As l2 + m2 + n2 = 1 the phase velocity of a wave travelling in the direction of s is 

(7.53) 
The displacement, from equation (7.48), is 

or 

u, = - 

so without loss of generality we may take s to be in the x direction, in which case 0 = 
0(x). It is clear that the particle motion is then in the direction of propagation, that is it is 
longitudinal. The wave is often referred to as dilatational because of the nature of equa- 
tion (7.46) but, refemng to Fig. 7.6, as there is no movement normal to the direction of 
propagation an elemental volume will change shape as the wave passes, and therefore 
some shear distortion occurs. The most accurate description of the wave is that it is irro- 
tational because, as we have shown in equation (7.50), rotation is a function of w only. 

For a disturbance which is represented by the vector function (w), let us consider a wave 
propagating in the x direction. In this case V2 is a function ofx only so equation (7.52) becomes 

2 a w, - a2w.r 

pax ' -P2-  

p a x 2 - - p 7  

a2w* - a w z  
P 2 - P 7  ax 

a2w, (7.54) 
2 a w, - 

2 

Fig. 7.6 (a) and (b) 
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The displacement is 

or 
ux = -w?:z + WZ.." 

u: = -wx,.V + w.v.x 

u., = 0 
u y  - -w*.x 

u z  = W . r  

uy = V.r.z - W , x  

If (w) is a function of x only and (w) is constant in the yz plane then the displacement is 

- 

which shows that the displacement is wholly normal to the direction of propagation. It is 
possible to choose the orientation of the yz axes so that w, = 0 and the displacement is in 
the z direction only. 

So, if 
awy 
ax 

u; = - 

the rotation (see equations (7.1 1 )  and (7.12)) 

i2r = Q, = 0 
which shows that the rotation is about they axis. Figure 7.6(b) shows the deformation. From 
the figure it is clear that there is also shear deformation. As a result of this the wave is often 
called a shear wave but a more accurate description is equivoluminal because the dilatation 
is zero. The particle motion is transverse to the direction of propagation and is polarized 
because the direction of motion can be in any direction which is normal to the direction of 
propagation. The wave speed, from equation (7.52), is 

J ( d P )  (7.55) 

Summarizing the above results 
Correct name Irrotational Equivoluminal 
Common name Dilatational Shear 
In seismology Primary Secondary(Horizonta1 or Vertical),polarization 
Displacement Longitudinal Transverse 
Wave speed J [ ( 2 P  + h)/Pl J ( d P )  
Symbols cl, c d ,  cp c2, cs, CSH or CSV 
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7.7 Plane strain 
In the previous section we studied a three-dimensional wave and found that two types of 
wave could be propagated, one with motion in the direction of travel and the other with 
motion normal to the direction of travel. Both types of wave arose as a solution to the three- 
dimensional wave equation in displacement u, rotation a, the scalar function 0 or the vec- 
tor function r. If the direction of propagation is parallel to a vector s = se, e being the unit 
vector, then we would expect a solution of the form used in the one-dimensional case to be 
applicable. So for any component of displacement we can write 

u = f(cr - S) 

for a wave travelling in the s direction. 
Now, choosing a suitable origin, 

s = x i  + y j  + zk 

and 

e = li + mj + nk 

where 1, m and n are the direction cosines of the vectors. So 

s = e-s = lx + my + nz 

and therefore 

u = f(ct  - s) = flct - (lx + my + nz)] 

The argument offis, 

(argf) = ct - (lx + my + nz) 

(7.56) 

(7.56a) 

(we shall not use z in this chapter for the argument). 
If we choose to consider a sinusoidal wave of the form 

= eJ(arp/) 

then we introduce a quantity k, as before, where k has the dimension (l/length) and is 
the wavenumber. If we make k the magnitude of a vector K then the argument could be 
written 

(argf) = ckr - ks = ckr - K.s 

where 

K = k,i + k,j + kzk 

As before ck is identified as the circular frequency o, so 
(argf) = or - K-s 

= or - (kx + k;r + kg)  

(7.57) 

(7.58) 

If we wish to retain the use of an arbitrary functionfthen we need to modi@ the argument 
so that all wave functions have the same time component. This can be achieved by writing 

c 
m (argf) = r - -x + -y + -z ( f  c 

(7.59) 
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Because the strain is planar we will need only the first and third rows and first and third 
columns. Thus 

Hence the strain is 

and the dilatation 
2 A = V 0 = O.Lr + 0.= 

From equation (7.41) the stress is 

101 = 2Pkl + wll 

(7.63) 

(7.64) 

which in two dimensions is 

(7.65) 

Note that although the strain is planar there will be a ov,, component of stress but this is not 
relevant in the problems to be discussed. 

1 0,xx - '+$,z.r 0.K - +(y,:;r yvA 1 0 .xz  - +(yy.:;- yv..rx) @.;z + y v , x z  
[GI = 2P 

0 3  + 0,:: 

O I  .. 

+ O.= 

7.8 Reflection at a plane surface 

We shall now use the equations developed in the last section to study the reflection of a wave 
incident on a surface given by z = 0. First we consider a dilatational wave approaching the 
surface such that the direction of propagation makes an angle 0, with the normal to the 
surface, see Fig. 7.8. The potential hnction for this wave will be 

z 
C 

+ - cos(0,) (7.66) 

We now assume that both a dilatational and a shear wave will be reflected; the functions will be 
z - -cos(@,) 
CI 

(7.67) 

(7.68) 
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Fig. 7.8 Reflection of dilational wave at free surface 

where wr is the reflected wy function. Note the change in sign of the z terms because the 
reflected waves are travelling in the negative z direction but still in the positive x direction. 

For z = 0 the functions represent a wave moving along the surface. Therefore the phase 
velocity given by each function must be identical 

(7.69) x -  CI - CI - c2 --- --- - 
‘P - i sin(ei) sin(0,) sin(%) 

Hence 

and 
e, = ei 

(7.70) c2 
CI 

sin(a,) = - sin@,) 

This relationship is, of course, Snell’s law. 
The angle of reflection is now determined but we need to calculate the relative amplitudes 

of the reflected waves. These will be determined by the boundary conditions at the free 
surface. The conditions are that the direct stress and the shear stress at the surface shall at 
all times be zero. From equation (7.65) 

- 
0 2 2  - 2 P ( 0 i . z z  + Or., + Wr,.rA 

+ U0i.n + 0 r . n  + 0i:z + 0r..u) (7.71) 

and 

(7.72) 

As both of these equations equate to zero we can substitute from equations (7.66) to (7.68) 
and divide through by the common factor to give 

1 
Ox: - 2P 0i.c + 0.r: -- (vr .zz - Yr.ii)] - 1  2 

II [cocs’e 
O = O i T + -  ’’ [ c ; h  A (9 + CO:~)] 

2P CI 

+ o r - + -  A sin2e cos2e 
2P (7 + 7-11 Cl 
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and 

where 8 = Oi = 8, and a = a,. The primes signify differentiation with respect to the argu- 
ment. Multiplying through by 2c: and taking 0, to be unity gives 

From equations (7.38) and (7.39) 
h - 2u 
P (1 - 2u) 
- -  

and from equations (7.53) and (7.55) 

(7.73) 

(7.74) 

(7.75) 

(Note that if u = 113 then Alp = 2 and c,/c2 = 2.) 
Given the angle of incidence equation (7.73) can be solved numerically for the relative 

amplitudes. The results of such calculations are given on Fig. 7.8 for three values of 
Poisson’s ratio. Notice the sensitivity to Poisson’s ratio. 

The above analysis gives the ratio of the second derivatives of the arbitrary potential func- 
tions, which will be the same as the ratios of the functions themselves. From equations 
(7.61) and (7.62) it is seen that for the dilatational waves 

u, = 0, and uz = 0,: 

so the displacement amplitude of a dilatational wave is 

= 0’/CI 

For the shear waves the displacement is 

u, = -%,z and uz = yy,x 

so the amplitude of a shear wave is 

(7.76) 

= w;/c, (7.77) 

From equations (7.76) and (7.77) the relative amplitudes of the reflected waves may be 
found directly from the ratios of the potential functions. 

For an incident shear wave the procedure is identical to that for the incident dilatational 
wave. Here the functions are 
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(7.78) 

(7.79) 

)I vi = Oi[t -(;sinei + -cosei z 

11 [ (.; c2 

0, = \yr t - -sina, - -cosq)] Z 1 (;I CI 

c2 

z 
\yr = 0, t - x sine, + -case, 

and 

(7.80) 

Using these functions in conjunction with equations (7.71) and (7.72) the surface stresses 
can be equated to zero to produce 

sin 28 -(c2/c,f(+ + 2cos2a][ 4 = [ s in201  (7.81) 

Figure 7.9 shows a plot of the relative amplitudes. Here it is noticed that no waves are 
propagated if the angle of incidence exceeds a value of 30" to 35"' the exact value depend- 
ing on Poisson's ratio. Although the reflected amplitudes appear to be large the energy in 
these waves can be shown to be equal to the incident energy. 

C O S ~ B  (c2/c, 12sin2a -cos20 1 

Fig. 7.9 Reflection of shear wave at free surface 

7.9 Surface waves (Rayleigh waves) 

Here we are seeking a solution to the wave equations of a form in which the amplitudes 
decay with distance from a free surface. In this case we shall postulate a running wave solu- 
tion with potential functions 

(7.82) 0 = A(Z)eJ'& - kr)  

and 

w,, = B(z)e"& - ICr) (7.83) 
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which is compatible with particle movement in the xz plane, as in the previous section. Also 
we have the same boundary condition of zero stress at the free surface. 

The wave equation (7.51) can be written 
2 

c,(0,, + 0 Z: ) = 0 

Substituting from equation (7.82) and dividing through by the common factor gives 

or 

Let 

so that 

d 5  - &A = 0 

(7.84) 

(7.85) 

(7.86) 

The general solution to this equation is 

where a and b are arbitrary constants. 

and thus a =A,.  Hence 

A = ae-Pli + bgi'  (7.87) 

We require A to tend to zero as z tends to infinity and therefore b = 0 and at z = 0, A = A o  

A(z) = AOePli (7.88) 
The wave equation (7.52) can be written as 

cf(y.v,.r.r + ~ y , z z )  = 8. 
so substituting equation (7.83) yields 

where 
B(z) = BOe-P2i (7.89) 

(7.90) 

(7.9 1) 

(7.92) 
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Thusatz = 0 

0 = 2p(p:A0 - jkp2B0) + h(-k20 + p:Bo) 

0 = 2p -jkp,A, -7(p2 1 2  + k2)Bo] I 
or 

From equations (7.38) and (7.39) 
L= 2u 

CI 1 - 2 u  

and 

(7.93) 

Let 

(c,/c,) = R 

Thus 
h/p = R - 2 

Dividing all terms in equation (7.93) by pk2 gives 

(7.94) 

-j2J[1 - ~c~)~ ’1 [^ .1  = [:I (7.95) 
(R[1 - (dc,),] - (R  - 2)) 

- j 2 ~ [ 1  - (c/cI)’] -[1 - (c/c2)’ + 13 Bo 

For a non-trivial solution the determinant of the square matrix must be zero. Thus 

-[2 - (c/cJ2I2 + W([1 - ( c / ~ ~ ) ~ / R ] [ l  - (c/c2f]} = 0 

A little more algebra leads to the following cubic in (c/c2f 

(er - 8(er + (24 --$)(e/ + (g - 16) = 0 (7.96) 

where 

(7.97) 1 - u  
1 - 2u 

R = (c1/c2), = 

It is well known that for a positive Poisson’s ratio the value cannot exceed 0.5. Analysis of 
the cubic shows that there is always one real root with c 0.263 there are three 
real roots but the upper two are for wave speeds greater than c, which are not admissible. The 
speed of the Rayleigh wave does not depend on frequency but only on the elastic constants. 

c2. For u 

From the first equation of (7.95) the ratio of the amplitudes is 

(7.98) 
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(7.99) 
The computed values of wave speed and relative amplitudes of the potentials are given in 

For ease of reference let Bo/Ao = -ip. 

the following table: 

u 0.250 0.300 0.333 
CIC, 0.919 0.927 0.933 
BOIA 0 -j 1.47 -j 1.52 -j 1.56 

From equations (7.61) and (7.62) we have 

U r  = 0.1- - wy; 

and 

uz = 0,: + w,.., 

u, = A,e-'~~-jkd'"' - A) - ~,e-*2'-~2 d'"y - /a) 

Substituting from equations 7.91 and 7.92 

u; = A,e-"l'- - Pe'(& - kr) + B0e-'zz-jk d" - kr)  

Atx = 0,z = Oweget 

u, = (-jkA, + p2BO)eJo' 

uL = (-plAo - jkB0)eJd 
(7.100) 

(7.101) 
Using equation (7.99) the ratio of the displacements may be written as 

u: - 
u.r 

-jk(l + P J [ ~  - (c/c~)~I) 
-k(J[l - (c/c~)~(c~/c,)~] + P} 

For u = 0.3 we have that c/c2 = 0.927 and p = 1.52. Thus 

_ -  (7.102) 

(7.103) 

This means that the amplitude of the displacement in the z direction is 1.52 times that in the 
x direction and is leading by 90'. That is, the motion is elliptical with the major axis verti- 
cal and the particle motion anti-clockwise. 

The Rayleigh waves are similar to deep-water gravity waves except that the speed does 
not depend on wavelength. When dealing with high-frequency waves in a bar the Rayleigh 
wave is often the form of propagation, the motion being concentrated in the region near the 
surface. The exact solution for waves in an infinite cylindrical bar was developed by 
Pochammer and Chree and here the Rayleigh wave was the form for high-frequency axial 
and bending waves. 

7.10 Conclusion 

In these last two chapters we have attempted to bring out the most important physical 
aspects of wave propagation in elastic solids. Many of the ideas are new when compared 
with rigid body mechanics and to normal mode vibration theory. Wave methods are most 
useful for short-duration phenomena such as impact. The time scale is judged by compar- 
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ing the impact time with the time taken for a disturbance to be reflected back from a 
boundary. Large-scale events like earthquakes require wave study and so do small-scale 
events where the wave speed is relatively low, as in problems involving springs. 

The three-dimensional waves have been described using Cartesian co-ordinates but many 
interesting problems are best solved using cylindrical or spherical co-ordinates. The funda- 
mental equations have been developed using the vector operator 

= (elT(V) = (VlT(e> 
The operations on a typical scalar 0 and a typical vector y can be summarized. 

The matrix form (V)0 has its vector counterpart 
(C?)~(V)O = VO = gradient 0 

Similarly (V)T(y.r) = (V)T(e)*(e)T(W) is the scalar 

Also [V]"(w) = [V]"(e)-(e)T(~) has its vector form 

V y  = divergence y 

( ( e ) T [ ~ ~ x ( e ) } . ( ( e ) T ( ~ ) }  = V X ~  = curl(or rot) y 

Because all the equations derived in this chapter assume a common basis for the vectors 
(i.e. i,j and k)  the following identities can be made 

(V)0 = grad0 
( V T ( W )  diVW 

[VI"(W) = curly 
The expressions for div, grad and curl in cylindrical and spherical co-ordinates are given in 
Appendix 3. Also included are the relevant expressions for stress and strain. 



8 
Robot Arm Dynamics 

8.1 Introduction 
In this chapter we examine the way in which three-dimensional dynamics is applied to a sys- 
tem of rigid bodies connected by various types of joints. Initially we shall describe some 
typical arrangements of robot arms together with their end effectors. We shall only be con- 
cerned with the overall dynamics and not with the detail. This is a vast subject area of which 
dynamics is a substantial and vital part. 

8.2 Typical arrangements 

8.2.1 CARTESIAN CO-ORDINATES 

Figure 8.1 shows the arrangement of a rectangular robot arm where the position of the end 
effector is located by specifying the x, y, z co-ordinates. Each joint responds to one co-ordi- 
nate, and all joints in this arrangement are sliding joints. An end effector is usually a grip- 
per or hand-like mechanism; these will be briefly described later. 

Fig. 8.1 
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8.2.2 CYLINDRICAL CO-ORDINATES 

A typical cylindrical co-ordinate arm is shown in Fig. 8.2. In this case the joints respond to 
r, 8 and z co-ordinates with the joints being sliding, revolute and sliding respectively, 

Fig. 8.2 

8.2.3 SPHERICAL CO-ORDINATES 

As can be seen from Fig. 8.3 this arm is controlled by specifying r, 0 and 0 with the joints 
being sliding and two revolute. 

Fig. 8.3 

8.2.4 REVOLUTE ARM 

A very common layout is shown in Fig. 8.4(a) in which all joints are revolute; this is a ver- 
satile system and more akin to the human arm. 

8.2.5 END EFFECTOR 

A simple end effector in the form of a gripper is shown in Fig. 8.5. This example has three 
degrees of freedom plus a gripping action. The movements at the wrist are often referred to 



Fig. 8.5 
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as roll, pitch and yaw. It is quite common to find that for some end effectors only roll and 
pitch are provided. 

8.3 Kinematics of robot arms 

In this section we shall first revise and extend the study of the kinematics of a rigid body 
with particular reference to rotation about a point and change of reference axes. The con- 
cept of homogeneous transformation matrices will then be introduced so that a systematic 
description of arm position and displacement can be made. 

The most common task to be performed is: given the path of the end effector, determine 
the magnitudes of the joint displacements as functions of time. This is referred to as the 
inverse kinematic problem and is usually more difficult than the forward problem of calcu- 
lating the path of the end effector given the joint positions. The obvious exception is the case 
of the Cartesian system. 

For one position of a cylindrical system 

r = \ (x’ + y’) 

z = z  

e = arctanb/x) 

r = , (x’ + y’ + z’) 
e = arctan [ z / ,  (x’ +yz) 3 
0 = arctan(y/x) 

and for a spherical system 

For the revolute arm of Fig. 8.4(b) 
8, = arctan b/x) 
Y = \ (x’ + y 2 )  
c = , (r‘ + 2’) 
A = arccos [ (L: + c’ - L:)  / (~L,c) 1 
B = arcsin [ (L , /L , )  sinA 3 
8, = arctan (ZIT) - B 
~ , = A + B  

8.3.1 VECTOR-MATRIX REPRESENTATION 

A position vectorp (shown in Fig. 8.6) has scalar componentsp,,p, andp, when referred to 
the xyz frame. This is written 

P = ip, + ip? + kp, 
which, in matrix form, becomes 
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Fig. 8.6 

If  we let 

(PI = @XP."Pd' 
and 

(e) = ( i j k l T  

then 

P = (eIT(p) (8.5) 

P = V) ' (P?  (8.6) 

If the same vector is viewed from the set of primed axes as shown in Fig. 8.7 

Fig. 8.7 

8.3.2 CO-ORDINATE TRANSFORMATION 

Since 

P = (e')'(p? = (4'(P) (8.7) 
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let us premultiply both sides by (e’), it being understood that the products of the unit vec- 
tors shall be the scalar products. 

Thus 

(e’)(e’)T(p’) = (ef>(e)T@> (8.8) 

Now 
3 .  3 il.,*f 3 .  kl 

(e‘)(e’)T - - ( ’:) ( 3 jl kl ) = [ j f .  il j f . j l  j l .  kl ] 
k’ k’. i’ k1.j’ k’. k’ 

= [ ;  8 B ]  (8.9) 

so that equation (8.8) reads 
( P ’ )  = (e’>(e)T(p) (8.8a) 

and 
3 . i  3 . j  3 . k  

(e’)(e)T = ( ; : ) ( i j k )  = [ j ’ . i  j ’ . j  j ’ . k ]  

k‘ k’. i k’. j k’. k 

- - [ ’  : 11 (8.10) 

1: rn: n, 

where I , ,  m,, n, are the direction cosines between the x’ axis and the x, y. z axes, as shown 
in Fig. 8.8. 

Now let [E]  = (e’)(e)T so that equation (Ma)  becomes ( p ‘ )  = [Q](p) ;  therefore [ E ]  is a 
transformation matrix. From the definition of the inverse of a matrix ( p )  = [Q]-’(p’) but by 

Fig. 8.8 
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premultiplying equation (8.7) by (e) and noting that (e)(e)’ = [Z], the identity matrix, we 
obtain ( p )  = (e)(e’)T(p’). By inspection it is seen that (e)(e’)’ is the transpose of (e’ e 
This is also seen from the rule for transposing the product of matrices, that is [(e’)(e) 3 - 

From this argument it is apparent that [a]-’ = [a]’, so by definition [a] is an orthogonal 

F T ’ 1  

(e)(e’IT. 

IlWtriX. 

8.3.3 FINITE ROTATION 

We shall now consider a closely related problem, that of rotating a vector. 
Consider a vector pI relative to fixed axes X; I: 2. A further set of axes, U, K W, moves 

withp, and may be regarded as rigidly fixed top,. If the UWaxes are rotated about the ori- 
gin then relative to the fixed axes p, moves topz as shown in Fig. 8.9. 

Fig. 8.9 

Using the prime to indicate components seen from the UVWaxes we have that initially 
( p ; )  = ( p , ) .  We now look at p2 from the rotated axes U W  so that its components ( p i )  = 
[11c](p2), but because the vector is fixed relative to the UWaxes,  ( p i )  = (p , ’ )  = (pl) and thus 
( P A  = [‘Ql-I(PI 1. 

If we define the rotation matrix [R] by ( p J  = [ R ] ( p l )  then 

[RI = [a]-’ = [a]’ = (e)(e’)’ 

ROTATION ABOUT X, Y AND 2 AXES 

(8.1 1 )  

8.3.4 

In general the rotation matrix is given by 

( 1) 
[ i. i’ i. j ’  i. k ’ ]  

[R]  = j ( T j ’ k ’ ) =  ji’ j j ‘  jk‘ (8.12) 
k. i’ k. j ’  k. k‘ 

So for rotation of the U W a x e s  by an angle a about the Xaxis, refemng to Fig. 8.10, and 
noting that i = i’ and that j * j ’  = cos(ang1e between the Y axis and the V axis) = cos a, etc., 
the rotation matrix is 
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Fig. 8.10 

0 .  0 

[ R ] , ,  = 0 cos a -sin a (8.12a) [ 1 s ina  cos a ] 
This result should be verified by simple trigonometry. 

Similarly for a rotation of p about the Y axis 

cos p 0 sin p 

[ -:np : c:sp] 

[RI.b:, = (8.13) 

and for a rotation of y about the Z axis 

cosy -sin y 0 

[RI,,= [ si;Y C Y Y  : ] (8.14) 

Note that by inspection 

[%U1 = [Rlx:u = [Rlx.-u (8.15) 

That is, the transpose is the same as the inverse which is also the same as rotation by a neg- 
ative angle. 

8.3.5 

In this section we shall adopt a simpler notation for rotation matrices, replacing [R] , ,  by 
[X,a] to mean a rotation of a about the fixed X axis. 

If a vector with components ( p l )  as seen from the fixed axes is rotated about the Xaxis 
by an angle a, then the new components are 

( P J  = [xal (Pl )  (8.16) 

SUCCESSIVE ROTATIONS ABOUT FIXED AXES 
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If now this vector is rotated about the Y axis by an angle j3 then the components will be 

( P J  = [Y¶Pl(P2) = [Y,PI[xal(P,)  (8.17) 

It follows that any firther rotations result in successive premultiplications by the appropri- 
ate rotation matrix. 

In the above case the new composite rotation matrix is 

cos P 0 sin P 0 0 

P I  = [Y,Pl[X,al = [ 0 1 0 ] [ i coo; -Si.si;] 
- - [ c: Ca -Sa ] 

-sin P 0 cos j3 

SPSa SPCa 

-SP CPSa CPCa 

where the usual abbreviations are made by writing C for cosine and S for sine. 

because [X,al[Y,Pl * [Y,Pl[Xal.  
It must be emphasized that reversing the order of the rotations produces a different result 

8.3.6 

If we wish to form the rotation matrix for a rotation of 0 about an axis defined by the unit 
vector n as shown in Fig. 8.1 1 ,  one method is given in the following steps: 

1. Rotate the axis of rotation so that it coincides with one of the fixed axes. 
2. Rotate the body by 0 about that axis. 
3. Rotate the axis back to its original position. 

ROTATION ABOUT AN ARBITRARY AXIS 

Fig. 8.1 1 



Kinematics of a robot arm 203 

Refemng again to Fig. 8.1 1, 

Step 1: Rotate the axis about the Y axis by p followed by a rotation of y about the Z axis; 
tan j3 = n/l and sin y = m, where 1, m and n are the components of the unit vector n. Note 
that in this example y would be numerically negative. 

Step 2: Rotate by 0 about the Xaxis. 
Step 3: Rotate back. 

In matrix form 

ERI,, = {[Y,-PI [Z,YI) {[x,0I) {[Z,-Yl[Y,Pl) 
{step 3 1 {step 2) {step 1 1 (8.18) 

(Remember that [Y,P]-' = [Y,-p].) 

Alternative method 

A vectorial relationship can be achieved as is shown in Fig. 8.12. Here n is the unit vector 
in the direction of the rotation and 0 is the finite angle of rotation. Owing to the rotation the 
vector r becomes r'. The vector r generates the surface of a right circular cone; the head of 
the vector moves on a circular arc PQ. N is the centre of the circular arc so 

n - r  = I r I c o s a = O N  

and 

I n x r l  = I r I s i n a  = NP = NQ 

Note also that the direction of n X r is that of VQ. 
+ 

Now 
+ + +  

r ' = O N  + NV + VQ 

= n(n * r) + [r  - n(n . r)] cos 0 + (n x r) sin 0 

Fig. 8.12 
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= r cos 0 + n(n - r)(l - cos 0)  + (n x r) sin 0 (8.19) 
If we use the same basis for all vectors then the above vector equation may be written in 
matrix form (see Appendix 1 on vector-trix algebra) as 

(8.20) (r)' = (r)cos 0 + (n)(n)T(r)(l - cos 0) + [nix (r)sin 0 

where 

(n) = (/mnlT (4 = (vYz)T  
0 -n m 

[nIX = [ -; ; ; ] 
(l, m and n are the components of n referred to the chosen set of axes). 

8.3.7 ROTATION ABOUT BODY AXES 
It is very common for rotation to take place about axes which are fixed to the body and not 
to axes which are fixed in space. For example, with the end effector, or hand, the axes of 
pitch, roll and yaw are fixed with respect to the hand. 

Let us first consider a simple case of just two successive rotations. In Fig. 8.13 a body 
with body axes UVW is initially lined up with the fixed XYZ axes. The body is first rotated 
by a about the Xaxis and then by y about the Z axis. Exactly the same result can be obtained 
by a rotation of y about the W axis followed by a rotation of Q about the U axis. This can 
best be demonstrated by using a marked box as shown in Fig. 8.13(a). 

The rotation matrix for the first case is 

[RI = [Z,rl[x,aI 
The form of a transformation matrix for rotation about the Xaxis is identical to that for rota- 
tion by the same angle about the U axis, similarly for the Y and V axes and also the Z and 
Waxes. So [Z,y][X,a] must be equivalent to [ W,y][U,a]. Note that the matrix for the second 
rotation now -multiplies the matrix for the first rotation rather than =multiplying as it 

Fig. 8.13 (a) 
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Fig. 8.13 (b) 

did in the case of rotation about fixed axes. Because the first two rotations were completely 
abitrary it follows that the rule is general. However, further justification will now be given. 

After the two rotations just made a further rotation p is now made about the V axis. 
This could be treated as a rotation about an arbitrary axis by rotating the body back to the 
initial position, rotating about the Y (or V )  axis and then rotating the body back again. 
That is, 

{rotate back} {[Y,p]} {return to base) {first two rotations) 

[RI = [Z,rI[Xal [Y,PI [x,-al[Z,-rI [Z,rI[Xal 
= [w,rl[u,aI[VPl (8.2 1) 

Note that [Z,-y][Z,y] = [X,-a][X,a] = [ f l ,  the identity matrix. This process can clearly be 
repeated for any further rotations about body axes. 

In summary, for rotation about a fixed axis the new rotation matrix premultiplies the exist- 
ing rotation matrix and for rotation about a body axis the new rotation matrix postmultiplies 
the existing rotation matrix. 

8.3.8 HOMOGENEOUS CO-ORDINATES 

The objective of this section is to find a way of producing transformation matrices which 
will allow for translation of a body as well as rotation. 

For a pure translation u of a body, a point defined by a vectorp, from some origin will be 
transformed to a vector pz where pz = pI + u, or in terms of their components 

Pzr = Plr + 4 

P2, = PI, + 4 

P22 = PI; 4- u: 

or 

(Pz) = (PI) + (4 (8.22) 
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For a combined rotation followed by a translation 

( P A  = [Rl(Pl) + (u) (8.23) 
If we now introduce an equation 

1 = (o)T(Pl) + 1 (8.24) 
(where (0) = (0 0 O)T, a null vector), we may now combine equations (8.23) and (8.24) to 
give 

(8.25) 

or, in abbreviated form, 

(P2) = [ T l ( d l )  (8.26) 
Here (3) is the 4 X 1 homogeneous vector and [TI is the 4 X 4 homogeneous transfor- 
mation matrix. In projective geometry the null vector and unity are replaced by variables so 
that the transformation can also accomplish scaling and perspective, but these features are 
not required in this application. 

For pure rotation (u) = (0) and for a pure translation [R]  = [ I ]  (the identity matrix). There- 
fore if we carry out the translation first (which is simply the vector addition ofp,  and u)  and 
then perform the rotation the combined transformation matrix will be 

so the transformed vector is 

(P2) = [R l (P l )  + [Rl(u) = [R l ( (P l )  + (0 
as would be expected. Note that rotation followed by translation produces a different result. 
This is because the rotation is about the origin and not a point fixed on the body. 

8.3.9 

Figure 8.14 shows a Cartesian co-ordinate robot arm. It is required to express co-ordinates 
in UVWaxes in terms of the XYZ axes. This can be achieved by starting with the UVWaxes 
coincident with the XYZ axes and then moving the axes by a displacement L parallel to the 
2 axis, M parallel to the Xaxis and then by N parallel to the Y axis. (The order of events in 
this case is not important.) Writing this out in full we obtain the overall transformation 
matrix 

TRANSFORMATION MATRIX FOR SIMPLE ROBOT ARM 

1 0 0 0  1 O O M  1 0 0 0  1 O O M  
O l O N  0 1 0 0  0 1 0 0  

[: : : :I[: : : :I[ ," ," : :I_ [ 8 : : ,I 
This result is equivalent to a single displacement of (M N L)T. 

We now consider a spherical co-ordinate arm as shown in Fig. 8.15 again starting with the 
two sets of axes in coincidence. First we could translate by d, along the Xaxis, then rotate 
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Fig. 8.15 

by 0 about the Y axis followed by 8 about the Z axis. The overall transformation matrix is 
[Z,~l[Y,0l[d,l 

ce -se o o c0 o s0 o l O O d ,  
ce o o 1 0 0  0 1 0 0  I:: ," ; 11[, : 7 :I[ ," ,": :I 
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ceca -se ces0 dxcecO 

S0C0 CO S0S0 dxSBCs - - [ -,”” : C; - d r  ] 
The above sequence could be interpreted as a rotation of 0 about the Waxis, a rotation of 0 

about the V axis and finally a translation along the U axis, as shown in Fig. 8.16. 

K W  

Fig. 8.16 

8.3.10 THE DENAVIT-HARTENBERG REPRESENTATION 

For more complicated arrangements it is preferable to use a standardized notation describ- 
ing the geometry of a robot arm. Such a scheme was devised in 1955 by Denavit and Harten- 
berg and is now almost universally adopted. 

Figure 8.17 shows an arbitrary rigid link with a joint at each end. The joint axis is desig- 
nated the z axis and the joint may either slide parallel to the axis or rotate about the axis. To 
make the scheme general the joint axes at each end are taken to be two skew lines. Now it 
is a fact of geometry that a pair of skew lines lie in a unique pair of parallel planes; a clear 
visualization of this fact is very helpful in following the definitions of the notation. The ith 
link is defined to have joints which are labelled (i - 1) at one end and (i) at the other. It is 
another geometric fact that there is a unique line which is the shortest distance between the 
two z axes, shown as Nf-l to 0, on Fig. 8.17, and is normal to both axes (and both planes). 

If the joint axes are parallel then there is not a unique pair of planes, so choose the pair 
which are normal to N,-, 0,. The origin of the (i - 1) set of axes by definition lies on the 
z, -~ axis but the location along this axis and the orientation of the x , - ~  axis have been deter- 
mined by the previous links. 

The ith set of axes have their origin at N, and the x, axis is the continuation of the line Nf-l 
to 0,. If the joint axes are in the same plane it follows that x, is normal to that plane. This 
can be seen if the two planes are almost coincident. 
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Fig. 8.17 

The parameters which are used to define the link geometry and motion are: 

8, is the joint angle from the x,-~ axis to the x, axis about the z, -~ axis. A change in 8, indi- 
cates a rotation of the ith link about the zi-l axis. 

d, is the distance from the origin of the (i - 1)th co-ordinate origin to the intersection of 
the z, -~ axis with the x, axis along the z , - ~  axis (Le. Of-l to N,-l). A change in d, indicates 
a translation of the ith link along the z,- I axis. 

a, is the offset distance from the intersection of the z, -~ axis with the x, axis to the origin of 
the ith frame along the x, axis (i.e. N,-l Of, the shortest distance between the two joint 
axes). 

a, is the offset angle from the z , - ~  axis to the z, axis about the x, axis. 

As in the simple cases considered previously we wish to perform a transformation of co- 
ordinates expressed in the ith co-ordinate system to those expressed in the (i - 1)th sys- 
tem. We achieve this by first lining up the ith to the (i - 1)th frame and consider the 
operations required to return the ith frame to its proper position. This is achieved by the fol- 
lowing actions: 

1. Rotate by 8, about the z , -~  axis. 
2. Translate by d, along the z , - ~  axis. 
3. Translate by a, along the x, axis. 
4. Rotate by a, about the x, axis. 
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The first two transformations are relative to the current base frame (xy~),-~ while the last two 
are relative to the body axes (qz) , .  Thus the overall transformation matrix is 

1 - I [A I, = [ TJ, - I ,d,l [ TJ,- I ,ell I [ TSE,,a, 1 [ TYX,,a,l 
Note the order of multiplication. This overall transformation matrix is often called the A 
matrix. In 1 1 1  we have 

1 o o o ce, -se, o o l O O a ,  1 0  0 0 

0 1 0 0 SO, C8, 0 0 0 1 0 0 0 Ca,-Sa, 0 

r - l [ A 1 r =  [ ",",i:][; ," ; :][ ;;;;I[; 7 : ;] 

I =I 0 0 0 1 

(8.27) 

(8.28) 
For a complete robot arm the A matrices for each link can be computed. The complete 

(8.29) 

Ce, -SB,Ca, SB,Sa, a,Ce, 

SO, CB,Ca, -Ce,Sa, a,SB, 

0 Sa, Ca, dl 

So we may now write 

M I - l )  = , - l [ ~ l ,  (bl) 

transformation is 

(bo) = ,[All l V 1 2  2 M 3  . * * n-I[AIn (b)* 

8.3.1 1 APPLICATION TO A SIMPLE MANIPULATOR 

Figure 8.18 shows a simple manipulator consisting of three links, all with revolute joints, 
and a gripper. We shall consider the problem in two stages, initially being concerned with 
the positioning of the end effector and later with its orientation and use. 

The first task is to assign the axes; this has to be done careklly as it must obey the rules 
given in the previous section. The first link, a vertical pillar, rotates about the z, axis and the 
x, axis is chosen, arbitrarily, to be normal to the pin axis at the bottvm of the pillar. The other 
two links are pin jointed as shown. The zl axis is the pin axis at the top of the pillar and the 
x, axis is normal to the plane containing the z, and zI axes. The z2 and 2 3  axes are both par- 
allel to the zI axis. The x2 axis lies along link 2 and the x3 axis is along link 3. 

We can now produce a table showing the parameters for each of the three links: 

Link 0 d a a 

1 8, dl 0 +90' 
2 01 0 a2 0 
3 0, 0 a3 0 

The three variables are e , ,  8, and 8,; all other parameters are constant. 

between the x axes. 
Notice that a is the shortest distance between the z axes and d is the shortest distance 
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Fig. 8.18 

In this arrangement d, ,  a2 and a3 are constant so that the relevant A matrices are 

ce, o se, o 

o L 4 1 , =  [ i [ -: ;,I 
, [A12= [ %; 3' ; a 2 7  j 

CB, -S0, 0 a,C0, 

C8, -SO3 0 &e3 

*[A13 = [ i' c: ! a37 ] 
The overall transformation matrix is 

o[A13 = o[A]i ~ [ A l z  z[A13 

The elements of this matrix are 

A , ,  = cos 8, cos(0, + 0,) 
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A,,  = -cos 8, sin(8, + e,) 
AI3 = sin 8, 

A 14 = COS e, [a3  COS(^, + e, ) + Q, COS e, 1 
A,, = sin 8, cos(8, + e,) 
A,, = -sin 8, sin(8, + 0,) 

A~~ =   COS^^ 
A24 = sin 8, [a3  COS(^, + e,) + a, cos e,] 
A31 = sin(0, + e,) 
A,, = cos(e2 + e,) 
A,, = 0 

A, = a, sin(0, + e,) + a, sin 8, + dl 

41 = 0 
A42 = 0 

&3 = 0 
& = 1  

The origin of the (xyz), axes is found from 

(bo) = o[A13 ($3) 
with (b,) = (0 0 0 l)T, see equation (8.25). Thus 

xO = A l 4  

YO = A24 

zo = A34 

In this case these may easily be checked by trigonometry. 

8.3.12 THE END EFFECTOR 

To demonstrate the kinematic aspects of an end effector we shall consider a simple gripper, 
as shown in Fig. 8.19. The arrangement here is one of many possibilities; in this one the z3 
axis could be termed the pitch axis, z4 the yaw axis and z5 the roll axis. This is one example 
of the use of Eulerian angles which were discussed fully in Chapter 4. 

The parameters for links 4, 5 and 6 are given in the following table: 

Link 0 d a a 
4 0 4  0 0 4  +90 ' 
5 0, 0 0 +90' 
6 06 d6 0 0 

from which the homogeneous matrices are 
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Fig. 8.19 

ce, o se, a,ce, 

3[A]4 = [ i' [ -R" a , ? ]  

4[A]s = [ i ! -7 g ] 
s[A]b = [ T 'i : i6 ] 

The overall transformation matrix for the end effector is 

ces o se, o 

c 8 6  - s o 6  0 0 

3 [ 4 6  = 3[AI4 d A I S  S[A16 

The components of &416 are 
A , ,  = cos e, cos Os cos 6 6  + sin 0, sin 0 6  

A,*  = -cos 8, cos OS sin e6 + sin 8, cos 6 6  

A I 3  = cos 8, sin 0 6  
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A14 = a, COS O4 + d6 COS e4 Sin 8, 

A,, = sin 8, cos e5 cos 8, - cos e4 sin 8, 

Azz = -sin O4 cos 8, sin 8, - cos 8, cos 8, 

A23 = sin O4 sin 8, 

A24 = a4 sin O4 + d, sin O4 sin 8, 

A3, = sin 8, cos e6 
A32 = -sin 8, sin e6 
A,, = -COS 8, 

A34 = -d6 COS 8, 

A4, = 0 

A4* = 0 

A,, = 0 

A- = 1 

In this example the end effector is shown in a position for which 8, = 90", 8, = 90" and O6 = 0. 
The complete transformation from the ( ~ 2 ) ~  axes to the (xyz), set of axes is 

3[A16($)6  ($10 = 0[A16(d)6 = o[A13 
or, in general terms, 

(8.30) 

It is seen by putting x6 = 0, y6 = 0 and z6 = 0 that (ry,rz) is the location of the origin of the 
(Vz)6 axes. If we put x6 = I with y6 = o and z6 = o we have 

x,  - rx = n, 

Yo - y v  = nv 
z,, - r, = n, 

Therefore (n,n,n,) are the direction cosines of the x6 axis. Similarly the components of (s) 
are the direction cosines of the y6 axis and the components of (a) are the direction cosines 
of the z6 axis. These directions are referred to as normal, sliding and approach respectively, 
the sliding axis being the gripping direction. 

8.3.13 THE INVERSE KINEMATIC PROBLEM 

For the simpler cases the inverse case can be solved by geometric means, see equations (8.1) to 
(8.3); that is, the joint variables may be expressed directly in terms ofthe co-ordinates and ori- 
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entation of the end effector. For more complicated cases approximate techniques may be used. 
An iterative method which is found to converge satisfactorily is first to locate the end effec- 
tor by a trial and error approach to the first three joint variables followed by a similar method 
on the last three variables for the orientation of the end effector. Further adjustments of the 
position of the arm will be necessary because moving the end effector will alter the refer- 
ence point. This adjustment will then have a small effect upon the orientation. 

Small variations of the joint variables can be expressed in terms of small variations of the 
co-ordinates. For example, if (p) is a function of (e) then 

or 

ae, ae, ae, 

(8.3 1 )  

where [D] is the matrix of partial differential coefficients which are dependent on position. 
It is referred to by some authors as the Jacobian. The partial differential coefficients can be 
obtained by differentiation of the respective A matrices. The matrix, if not singular, can be 
inverted to give 

(W = [DI-' @PI0 (8.32) 
since 

(Ae)  = ( e ) n + l  - (01, 

( e ) n + l  = (e), + [DI,' ( ~ ~ 1 0  (8.33) 

Repeated use enables the joint positions to be evaluated. 
In general since 

( P I 0  = ,[AI, * . n-I[Aln ( @ I n  

then 

where qi is one of the variables, that is 0 or d. 

for a revolute joint or of di for a prismatic/sliding joint. 
It should be noted that in this context (p) , ,  is constant and that i-,[A]i is a finction of Bi 

For the general case 

;-,[AI; = 
SO, CB;Ca, -CBiSai aisei 

Sai Cui 
0 0 1 

;-,[AI; = 1 cei -SeiCai SB,Sa, aiCei 

SO, CB;Ca, -CBiSai aisei 

0 Sai Cui 
0 0 0 1 

so differentiating with respect to Oi 
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1 
1 

-SO, -CB,Ca, CB,Sa, -a,SB, 

CB, -SB,Ca, SB,Sa, a,CB, 
0 0 0 0 

0 0 0 0 

CB, -S0,Ca, SB,Sa, a,CB, 

SO, C0,Ca, -CB,Sa, a,SB, 

a 
30, 

,-i[AI, = - 

Note that the right hand side of equation (8.34) may be written 

Ca, dl 
0 0 0 1 

or in symbol form 
a 
80, 

,-i[AI, = [Ql ,-i[Al, - 

where 

In a similar manner 

(8.34) 

(8.35) 

(8.36) 

where 

0 0 0 0  [I::::] 0 0 0 1  

8.3.14 

The basis for determining the joint velocities given the motion of a particular point has 
already been established in section 8.3.13 where the matrix [D] was discussed. If  we con- 
sider the variations to take place in time At and then make At + 0 then, by definition of 
velocity, 

( d o  = [Dl(e) (8.37) 

LINEAR AND ANGULAR VELOCITY OF A LINK 

so the joint velocities can found by inversion 
<e> = [DI-'(P)o (8.38) 
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Refemng to Fig. 8.20 we can also write 

($10 = o[Aln(d)n 
Thus 

(8.39) 
d 

dt 
- ($10 = 0 [ 2 1 n ( ~ ) n  

where ( $ ) n  is constant. 
Consider the product of two A matrices [ ::;’ (:,,I [ ‘1 (,,;I = [ [RI;;], 1 [RlI(u:, + ( 4 1  ] 

It is readily seen that for any number of multiplications the top left submatrix will 
be the product of all the rotation matrices and the top right submatrix is a func- 
tion of [R] and (u) submatrices. So in general the product of A matrices is of the 
form 

[RI (r)  
[A1 = L O )  1 1 

We have already shown that the column matrix (r)  is the position of the origin of the final 
set of axes and the three columns of [R] are the direction cosines of these axes. 

So (p)o = [ R ] ( p ) ,  + (r)  and the position of a point relative to the base axes is 

(ph - (r)  = ( A P )  = [RI(p)n 
Differentiating with respect to time gives the relative velocity 

(AP) = [RI (P)~  (8.40) 

Fig. 8.20 
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so it is seen that [i] is related to the angular velocity of the nth link. Now (Ab) is the veloc- 
ity of P relative to 0, referred to the fixed base axes. We can find the components referred 
to the (xyz), axes by premultiplying (AP) by [RI-’ = [RIT thus 

(8.4 1) 

We know that [RIT[R] = [I] so by differentiating with respect to time we have [R],T[i] + 
[iIT[R] = [O] and as the second term is the transpose of the first it follows that [R] [R] is 
a skew symmetric matrix. This matrix will have the form 

(Ab), = [ R I ~ ( A ~ )  = [RI~[RI(P)~  

where (a,ra,a,)T is the angular velocity vector of the nth link. 
Now 

i=n 

[Rln = GI [Rli 
so 

101; = [RlT,[Rln = [RIT, 2 [Rll[R12 * [Ql[Rli [Rlnqi 

where 

(8.42) 

0 - 1  0 

[ . I = [  0 1  
for the 3 X 3 rotation matrices. Each term in the above series is equivalent to the change 
in [a]’ as we progress from link to link. 

8.3.15 LINEAR AND ANGULAR ACCELERATION 

The second differentiation can be found by simply reapplying the rules developed for the 
first differentiation with respect to time. 

We see that since 

(b)o = 0[4n(b)n 

(8.43) 

In order to see the operation let us look at a two-dimensional case and with n = 2, as 
shown in Fig. 8.21, for which theA matrices are functions of 8’ and 8, so that 

(810 = 0 [ 4 l  I [42(b)2 
where 
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Fig. 8.21 

and the A matrix for the two-dimensional case (for which a = 0) may be written 

I l o  0 1 

cos 8 -sin 8 a cos 8 

[A] = sin 8 cos 8 a sin 8 

Therefore 

( P > o  = [Qlo[Ali i[Al2 9 i < P > 2  + o[Ali[Qli[Al2 e 2 ( P ) 2  

and 

( P > o  = [QloZ[Ali i[Alz e f ( P 1 2  + [ Q I o [ ~ l i [ Q I ~ [ ~ l ~  e i e 2 ( P > 2  

+ [Qlo[Ali i W 1 2  4i(P)2 

+ [ Q l o [ ~ l i [ Q l i [ ~ l t  e i e 2 ( P > 2  + o[Ali[Ql~[Al2 e,’(P>2 + o [ ~ l i [ Q l i [ ~ l 2  GI($), 
If we require the origin of the (x Y ) ~  axes to follow a specified path then for each point on 

the path, (x Y ) ~ ,  the corresponding values of 8, and O2 can be found. Also if the velocities and 
accelerations of the point are prescribed the derivatives of the angles can be calculated using 
the above equations. 

Once the values of e,, 8, and their derivatives are known any linear or angular velocity 
and linear or angular acceleration can be found. 

The above scheme can in principle readily be extended to the three-dimensional case and 
any number of links can be considered. 

The general form of the equations is 
i=n 

( P I 0  = !i i- i[Ali(P)n = [ W n ( P ) n  (8.44) 

where [un is defined by the above equation (8.44). 
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The velocity is 

where [Uln,i is a fimction of the A matrices and hence of the joint variables, that is 

[ U l n . i =  ,[All . . [Qli-~[Ali . . * .-,[AI, (8.46) 
For the acceleration 

I= I 
where 

(8.47) 

(8.48) 

We have shown previously that in general 

so 
[R] (r) 

[ A I = [  ] 
Since, for constant (p) , , ,  we have 

tb) = [ j l < i > n  

then we have 

( P I  = [RI(P)~ + ('1 
and thus the acceleration of P relative to the origin of the (vz), axes, (Ap),, = ( p )  - (P) 
= [RI(P)~* 

If we now refer the components of this vector to the (vz), axes we have 

[~ l ' (~ i i )n  = [ R I ~ [ ~ I ( P ) ~ .  

[ 0 I X  = [R]'[d] 

Now 

so 

[&IX = [R]'[R] + [RIT[k] 

[R]'[k] = [&I" - [ri]'[ri] 
and therefore 
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Also 

[RIT[il = [ilT([~l[RIT) [il 
= ( [ ~ l T ~ ~ l ) T ( [ ~ l T ~ ~ l )  
= [o]xT[o]x 

= -[o]"[o]" 

Finally 

[RI~(AP)~ = [RI~[RI(P)~ 
= {[&Ix + [oIX[~Ix)(p)n 
= [bI"(p)n + [oI"[~I"(p)n (8.49) 

where ( p ) ,  is of constant magnitude. This result is seen to agree with that obtained from 
direct vector analysis as shown in the next section. 

8.3.16 DIRECT VECTOR ANALYSIS 

It is possible to derive expressions for the velocity and acceleration of each link by vector 
analysis. The computation in this case uses only 3 x 1 and 3 x 3 matrices rather than the 
full 4 X 4 A matrices used in the last section. 

Referring to Fig. 8.22 we see that the position vector of the origin of the (xyz), axes is 

r, = r,- ,  + d, + 0, (8.50) 

Fig. 822 
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and 

The velocity of 0 is 
dr, dri-l 

dt dt 
+ - (d, + a; )  + 0, x (dj + ai )  

at 
V i = - = -  

(8.51) 

(8.52) 

We require our reference axes to be fixed to the ith link in order that when the moment of 
inertia of the ith link is introduced it shall be constant. For the second term on the right the 
partial differentiation means that only changes in magnitude as seen from the (qz), axes are 
to be considered. For a revolute joint where both d and u are constant in magnitude this term 
will be zero. For a prismatic joint the term will be Aiki-,. 

To simplify the appearance of the subsequent equations we again use 

ui = dj + ai (8.53) 

and write vi-, for d(r,-,)/(dt) so equation (8.52) becomes 
au, 

at v .  = v .  + - + 0; x ui 1 1-1 

For a revolute joint the second term on the right hand side is zero. 
The acceleration of 0; is 

(8.54) 

(8.55) 

For a revolute joint the second and fourth terms on the right hand side are zero whilst for a 
prismatic joint the third term is zero. 

Both of these equations may be expressed in matrix form assuming that the base vectors 
for all terms are the unit vectors of the (qz), axes. Thus we may write 

aL, aO, au, 

at2 at at 
u, = t Z - 1  + - + - x u, + 0, x - + 0, x (0, x u,) 

(8.56) 
a 
at 

(VI, = (a, + - ( 4 1  + Lo]: ( 4 1  

and 
a2 a a 
at at at (a), = (a),- ,  + 7 W, + ( - [a]: ) W, + [a]: - (u), + [o~:[ol:(u), (8.57) 

where 
a 

[a]: = [R]:[R],  and -[a]: = [R]T[d], + [ R ] f [ k ] ,  
at 

also 

[RI, = [ R I ~  . * [QI[RI, * * [ ~ ~ n i i  

and 

[k],  = [R],  . . . [Q][RIj  . . . [R],9, 

+ C C [R],  . .  . [Q][R], . . . [Q][R], . .  . [R],eii j  
i=n j=n 

, = I  j = l  
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8.3.17 TRAJECTORY PLANNING AND CONTROL 

In a practical pick and place type of operation an object is to be moved from point A to 
point B and, for example, has to avoid an obstacle C, as indicated in Fig. 8.23. The problem 
is often tackled by planning for the end effector to move from A to B so as to arrive with 
low speed at B and then to align the gripper. The exact path is not important apart from the 
three specified points, so there are an infinite number of possible paths that the arm can fol- 
low. The many factors which affect the choice of path are outside the scope of this book as 
we are concerned only with the pure dynamics of the problem. 

One technique used is to consider the path to be constructed from short segments passing 
through a number of prescribed points. Usually a polynomial of third or fourth order is cho- 
sen to represent the path between the specified points. 

Another powexfbl method is to use position sensors to give feedback to an automatic 
control system. These control systems are frequently digital, which makes adaptive control 
easier. 

Fig. 8.23 

8.4 Kinetics of a robot arm 

Our next task is to determine the forces and couples associated with the prescribed motion. 
In the practical case it is not always possible to generate the required forces so the motion 
which ensues from given forces may need to be calculated. 

A dynamical model may be used for the prediction of performance or for forming part of 
a real-time control algorithm. 

We shall use Lagrange’s equation in conjunction with homogeneous transformation 
matrices and the Newtoe-Euler approach using a vector algebra method. It should be noted 
that both Lagrange and Newton-Euler could be associated with either the homogeneous 
matrix formulation or vector algebra. 

8.4.1 LAGRANGE’S EQUATIONS 

Here we only generate one equation for each degree of freedom of the system and the basic 
formulation only needs expressions for velocities and not for acceleration. However, differ- 
entiation of the velocity- and position-dependent functions is required. 
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Thus the kinetic energy of link n will be 

(8.58) 

where R is the number of point masses used to represent the rigid body. For an exact repre- 
sentation R 2 3. 

The total kinetic energy will be just the sum of the energies for each link in the chain. 
It would be convenient to be able to reverse the order of summation since (jjr),,  and mr are 

properties of  the link and do not depend on its location. This can be achieved by noting that 
. .  . .  . .  

Xofo ' f q o  To<o 0 

Trace ($),(pi = Trace 1:' zoxo -?$ y: ZGO i ] 
.2 = i; + yo + i; 

(8.59) 2 = vo 

So we may now write 

(8.60) 

The link variables, 8 or d, satisfy the requirements for generalized co-ordinates and so 
will be designated by q, as is usual in Lagrange's equations. Also the centre term depicts the 
inertia properties of the nth link and will be abbreviated to+[J],. Note that [J], is a sym- 
metric matrix. The top left 3 x3 submatrix is related to the moment of inertia matrix of the 
nth link relative to the nth joint, but is not identical to it. Thus 

Cmy2 Cmyz 
Cmzr Cmzy Cmz' 

Cmy Cmz 
Emz 

In terms of [J]  the kinetic energy of the nth link is 
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We now need to carry out the differentiations as prescribed by Lagrange's equations, 

but since the second term is the transpose of the first 

Therefore 

In a similar manner we can obtain 

(8.61) 

(8.62) 

So for the nth link 

We are now in a position to sum over the whole arm of N links. For clarity the constant 
terms are now taken to the right of the summation sign to give 

= Qk (8.64) 
the generalised force, where T = ET. 

For revolute joints Q will be the torque at the pivot and for a prismatic joint Q will be the 
sliding force. 

Equation (8.64) may be written in a more compact form by reversing the order of sum- 
mation. This requires adjusting the limits. The form given below can be justified by expan- 
sion. The term max(ij,k) means the highest value of i , j ,  or k 

(8.65) 
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where 

(8.66) 

(8.67) 

8.4.2 NEWTON-EULER METHOD 

This method will involve all internal forces between each link as indicated on a free-body 
diagram, as shown in Fig. 8.24. Expressions for the accelerations of the individual centres 
of mass and the angular velocities and accelerations can be found as discussed in the previ- 
ous sections. 

So for each link, treated as a rigid body, the six equations of motion can be formulated. 
With reference to Figs 8.22 and 8.24 the equations of motion for the ith link are 

(8.68) 6 + e-, = miuGi 
and 

(8.69) d 
dt C; + Ci-l + rG;xI;; - (pi - rGi) X &  = - ( J G j ’ m j )  

where JGj is the moment of inertia dyadic referred to the centre of mass of the ith link. 
The acceleration of the centre of mass, uGi , may be found from 

(8.70) a 
at 

acj = u; + -(O,)X rGi + O,X(O;X rGi) 
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Fig. 8.24 

The above three equations may also be written in matrix form using (xyz), axes as the 

(F)i + (R,-= 4 ( a ) G f  (8.71) 

basis 

(C), + (Q-I  + (.>1;,(F), - [(PI, - (T )GI IX (F ) I - I  

= [ J l G , ; j T  a (01, + [JIG, [~l:<w, (8.72) 

W G ,  = (4, + $4x(%I a + [~l:~~l:(~lG, (8.73) 

Discussion example 

A spherical robot is shown in Fig. 8.25(a). During operation the position co-ordinates are: 
8, = 90", 0, = 60" and d, = 0.8 m. Also d0,ldt = 2radls constant and dd,ldt = 3 d s  
constant. 

The inertial data are 

for link 2: mass = 20kg moment of inertia about G, = 8kgm' 
for link 3: mass = lOkg moment of inertia about G,, = 4kgm2 

a) Using the A matrices calculate the position and velocity of the end of the arm E. 
b) Using Lagrange's equation obtain the equations of motion for co-ordinates 0, and d,. 

(a) The table of link parameters is first constructed. Referring to Fig. 8.25(a) the origin of 
the (xyz), axes has been chosen to coincide with the origin of the (xyz), axes. By using the 
data sheet given at the end of the chapter we see that as a is the distance between successive 
z axes all the a dimensions are zero. 

OG, = 0.2m and G,E = 0.3m (see Fig. 8.26) 

The distance between successive x axes is d and hence d,  = 0. 
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(4 

Fig. 8.25 (a) and (b) 

Now a is the rotation of one z axis relative to the previous z axis so aI = -90" and a, = 

The table is as follows: 
90". Special care is needed to ensure that the signs are correct. 

Link e a a d 
1 90 ' -90' 0 D, = O  
2 60 ' 90" 0 0 

3 0 0 0 0.8 

With reference to the data sheet the three A matrices are 

ce, o sel o 

& 4 1 , = [ ;  ;l 9' ;] 
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The 

ce, o se, 
se, o -ce2 

1 0 
0 0 0  

0 0 

l [ 4 2  = I 
overall transformation matrix is 

0 :I 1 

:j 1 
d3 

,[TI3 = o P I 3  = o[A]i 1[Al2 ,[AI3 

1 ce,ce, se, ce,se, d3ce,se2 
se,ce, -ce, se,se, d3se,se, 
- se, 0 Cf-32 d3C02 

0 0 0 1 

= [ (;I (3) (a) (P)] 
0 0  1 

=I 
Here the last column gives the co-ordinates of the ( ~ y z ) ~  axes 

xE0 = d3cos(8,)sin(8,) = 0 

yEO = d3sin(8,)sin(8,) = 0.8 X 1 X 0.866m 

zEO = d3 COS( 8,) = 0.8 x 0.5m 
These results can easily be verified by simple trigonometry. 

We shall now use the A matrices to evaluate the velocity of the point E. Now 

d 
(pE)o = dt O[A]~(PE)~ = o[Al3 @~)3 

There is only one term on the right hand side of the equation because the position vector of 
point E as seen from the (xyz), axes is (0 o o llT for all time. 

For brevity let us write ,[A], = AIA2A3 so, with reference to equations (8.35) and (8.36) 
we have 

0[i]3 = QA,A2A3i), + A,QA,A,i), + A,A,P!3Li, 

As 4, = 0 the first term is zero and by direct multiplication the other two terms are 
I 

0 0 0 
-0.866 0 0.5 
-0.500 0 -0.866 -0.779 

0 0 0 0 
I 
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0 0 0 0 1.. 0 0 0.866 
0 0.500 

A,A2PA3d3 = 1 i o 

0 0 0 0 

The velocity of E is given by summing the last columns of the preceding two matrices 

XEO = 0 

Y E 0  = 0 . 4 ~ 2  + 0 . 8 6 6 ~ 3  = 3 . 3 9 8 d ~  

2, = - 0 . 6 9 3 ~ 2  + 0 . 5 0 0 ~ 3  = - 0 . 1 1 4 d ~  

Again these results are readily confirmed by direct means. 

convenient mathematical computer package. 

(b) Lagrange’s equations are 

The matrix multiplications involved in the above calculations can be carried out using any 

aT av - -  d4 (;:) - G + a41 = Qi 

The virtual work done by the active forces and couples is 

~ F V  = Q16qi + Q26q2 
6W = C260, + F36d3 

where C, is the torque about the zo axis acting on link 2 and F3 is the force acting on link 3 
along the Z, axis. 

The kinetic energy (see Fig. 8.26) is 

T = - m,(a6)’ + 124 + m3[(d3 - b),g + ai] + 13% 
2 l {  .,I 

For qi = 8, 

aT = [rn2a2 + 1, + I~ + m,[(d3 - b12]i2 
8% 

- -.- = [rn, + I* + I, + m3(d3 - b)2~82 + 2m3(d3 - b)i3& 
dt d (aT) ae, 

Fig. 8.26 
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ar - av - - 0 ,  - = O  and Q = C 2  
(302 a02 

[m2 + I,  + 1, + m3(d3 - bf38, + 2m3(d3 - b)d3g2 = C2 

so the equation of motion for e2 is 

Inserting the numerical values gives 

and as 0, = 0, d, = 3 d s  and & = 2radls we have 

(15.3)6, + loci3& = c2 

C2 = 60Nm 

Similarly for qi = d3 
L(x) = m3d3 and - aT = m3(d3 - b)0, ‘ 2  

dt ad, ad3 

so the equation of motion for d3 is 

m3d3 - m3(d3 - b)e: = 4 
The same set of equations can be formed using D’ Alembert’s principle. We refer to Fig. 8.27 
where the accelerations have been determined by direct means. Also shown with heavy 
arrows are the virtual displacements. 

D’Alembert’s principle states that the virtual work done by the active forces less that done 
by the ‘inertia forces’ equals zero. 

For virtual displacement 65 = 60,’ (6d3 = 0) 

C260, - 126,60, - m2a6,a60, - m3[(d3 - b)8, + 2a,0,](d3 - b)68, 

- 1 ~ 6 ~ ~ 0 ,  = o 
and now with 65 = ad,, (68, = 0) 

F,M, + m3[(d3 - b)e: - d3]6d3 = o 
Thus 

C, - [I, + r3 + m2a2 + m3 (d3 - b)’16, - 2m,ci,B,(d3 - b) = o 

Fig. 8.27 
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and 
F, + m3[(4 - b)G2 - d3] = 0 

Let us now return to the Lagrange method but this time make use of the 4x4 homoge- 
neous matrix methods. Using equation (8.65) we have N = 3 but since link 1 is stationary 
it is not involved in the kinetics, although it still affects the geometry. 

The inertia data is not in the form needed to generate the [J] matrices. If we define I, = 
E m 2  + Emy2 + Emz2 then it is easy to show that 21, = I, + I ,  + I,. Therefore 

2 cmx = I, - z, 
cy2 = Ip - IF 

cz2 = I, - I, 

For link 2 we use the parallel axes theorem to to evaluate I, = ZGv + m2a2 = 8.0 + 20 ~ 0 . 2 ~  
= 8.8 kgm2. We will assume that Zox = Z, and that Zoz is negli ible. Therefore Z, = 8.8 kgm2. 
It now follows that Xmx2 = 0, Emy2 = 0 and Ern2 = 8.8kgm. The term Xmz = 20x0.2 = 4. P 

The inertia matrix for link 2 is 

0 
0 

[J12 = () I 0 

similarly for link 3 

0 
0 

8.8 
4 

0 
0 

4.9 
-3 

4 
20 :I 
-3 
10 Ej 
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All other terms are zero. Thus 

15.38, + 5.00,d3 = C, 
In this problem the geometry is particularly simple so that the 4x4 matrix methods can 

It is left as an exercise for the reader to obtain the equations of motion using the New- 
readily be compared with other methods. 

tonian approach. The free-body diagrams and kinematics are shown in Fig. 8.28. 

Fig. 8.28 

Robotics data sheet 

LINK CO-ORDINATE SYSTEM 

The z(i)  axis is the axis of rotation or sliding ofjoint (i + 1). The x ( i )  axis lies along the com- 
mon normal to the z(i) and z(i- 1) axes. This locates the origin of the (xyz), axes except when 
the z axes are parallel; in this case choose the normal which passes through the origin of the 
( x y ~ ) ~ - ,  axes. 
e(i) is the joint angle from the x(i  - 1) axis to the x ( i )  axis about the z(i - 1) axis. 
d(i) is the distance from the origin of the (i- 1) co-ordinate frame to the intersection of the 

a(i) is the offset distance from the intersection of the z( i -  1) axis with the x(i)  axis and the 

a(i) is the offset angle from the z(i- 1) axis to the z(i)  axis. 

z(i- 1) axis with the x ( i )  axis along the z(i- 1) axis. 

z(i)  axis (i.e. the shortest distance between the z(i- 1) axis and the z(i) axis). 
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HOMOGENEOUS TRANSFORMATION MATRIX FOR A SINGLE LINK 

This matrix is 

C6 -Cas6 SaSB 
se CaCe -Sac0 ::;I 

sa C a  d [AI = o I 0 0 0 1 

The overall transformation matrix is 

[TI = ii",-,[Al, 1 = l  

and the position vector 

(b)  = @r P. Pz 1) 

Fig. 8.29 



Relativity 

9.1 Introduction 

In this chapter we shall reappraise the foundations of mechanics taking into account 
Einstein’s special theory of relativity. Although it does not measurably affect the vast 
majority of problems encountered in engineering, it does define the boundaries of 
Newtonian dynamics. Confidence in the classical form will be enhanced as we shall be 
able to quantify the small errors introduced by using Newtonian theory in common engi- 
neering situations. 

The laser velocity transducer employs the Doppler effect which, for light, requires an 
understanding of special relativity. The form of the equations derived for cases where the 
velocities of the transmitter and/or the receiver are small compared with that of the signal is 
the same for both sound and light. This will be discussed later. 

We shall also consider the definition of force. It is of note that relativistic definitions are 
such that they encompass the Newtonian. The general theory of relativity raises some inter- 
esting questions regarding the nature of force, but these do not materially affect the 
equations of motion already derived. 

9.2 The foundations of the special theory of relativity 

It is not our intention to retrace the steps leading to the theory other than to mention the most 
significant milestones. In the same way that Isaac Newton crystallized the laws of mechan- 
ics which have formed the basis for the previous chapters in this book, Albert Einstein 
provided the genius that solved the riddle of the constancy of the speed of light. 

James Clerk Maxwell’s equations for electrodynamics predicted that all electromagnetic 
waves travelled at a constant speed in a vacuum. If the value of the speed of light, c, is eval- 
uated for what we shall assume to be an inertial frame of reference then, according to 
Maxwell, the same speed is predicted for all other inertial frames. This means that a ray of 
light emitted from a source and received by an observer moving at a constant speed relative 
to the source would still record the same speed for the ray of light. 

Light was supposed to be transmitted through some medium called the ether. In order to 
accommodate the constancy of the speed of light various schemes of dragging of the ether 



236 Relativity 

were put forward and also the notion of contraction in the direction of motion of moving 
bodies. Lorentz proposed a transformation of co-ordinates which went some way to solving 
the problem. The real breakthrough came when Einstein, instead of trying to justify the con- 
stancy of the speed of light, raised it to the status of a law. He also made it clear that the 
concept of simultaneity had to be abandoned. 

The two basic tenets of special relativity are 

the laws of physics are identical for all inertial frames 

and 

the speed of light is the same for all inertial observers 

Figure 9.1 shows two frames of reference, the primed system moving at a constant 
speed v relative to the the first frame which, for ease of reference, will be regarded as 
the fixed frame. The x axis is chosen to be in the same direction as the relative velocity. 
An event E is defined by four co-ordinates: three spatial and one of time. In the original 
frame the event can be represented by a vector having four components, so in matrix 
form 

(E)  = (ct x y z)’ 

(E? = (ct’ x’ y’ Z’)T 

(9.1) 

(9.2) 

The factor c could be any arbitrary speed simply to make all terms dimensionally equivalent, 
but as it is postulated that the speed of light is constant then this is chosen as the parameter. 

If a pulse of light is generated when 0 was coincident with 0’ and t = t’ = 0 then, at a 
later time, the square of the radius of the spherical wavefront is 

and in the primed system 

(9.3) 

(9.4) 

2 2 2  (ct)2 = x + y + z 

(ct’)2 = x’2 + y’2 + Z J 2  

and in the moving frame 

Fig. 9.1 
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We define the conjugate of ( E )  as 

(9.5) 
T - 

( E )  = (ct  - x - y - z )  

so that 
2 2 2 2  (QT(E) = (ct)  - x  - y - 2  

From equation (9.3) 

(QT(E) = 0 (9.7) 
Similarly 

= 0 (9.8) 
Also we define 

so we can write 

(6 = [ M E )  

(QT@) = QT[rll(E? = 0 

Equation (9.7) can be written as 

and equation (9.8) can be written as 

= (E?T[q](E’) = 0 

(9.10) 

(9.1 1) 

(9.12) 

We now assume that a linear transformation, [TI, exists between the two co-ordinate sys- 

(E? = [TI(@ (9.13) 
tems, that is 

with the proviso that as v + 0 the transformation tends to the Galilean. 
Thus we can write 

(E?T[r71(E’) = (QTITIT[ql[Tl(Q (9.14) 

and because (E’) is arbitrary it follows that 
tTIT[rlllTl = [rll (9.15) 

Now by inspection [q][q] = [ I ] ,  the unit matrix, so premultiplying both sides of equation 
(9.15) by [q ]  gives 

[ l - l l [TIT[~l [Tl  = 111 (9.16) 

From symmetry 

Y /  = Y 

ZI = z 
and 

Consider the transformation of two co-ordinates only, namely ct and x. Let 

(9.17) 

(9.18) 
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and in this case 

[rll = [; -;] 
Substituting into equation (9.16) gives 

or 

Thus 

A 2 - C Z = 1  
D2 - B2 = 1 

AB = CD 

Substituting equations (9.2 1) and (9.22) into equation (9.23) squared gives 

A ~ ( I  - D') = (1 - A')D~ 
so 

(9.19) 

(9.20) 

(9.2 1) 

(9.22) 

(9.23) 

A' = D2 
(1 - A') ( 1  - D2) 

This equation is satisfied by putting A = iD, we choose the positive value to ensure that as 
v -+ 0 the transformation is Galilean. Let 

(9.24) A = D = y (say) 

Hence it follows from equation (9.23) that if 
A = D then B = C (9.25) 

We can now write equation (9.19) as 

et' = yet + Bx 

x' = Bet + yx 

Now for XI = 0, x = vt. Therefore equation (9.27) reads 

0 = Bet + yvt 
or 

B = - Y V / C  

Letting 

gives 
p = vie 

(9.26) 

(9.27) 

(9.28) 
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B = -by 
From equation (9.22) 

D 2 =  1 + $  
and therefore 

y2 = 1 + y2p2 

4 1  - P2) 

et’ = yet - ypx 

X I  = -pyct + yx 

ct = yet‘ + ypx’ 

x = pyct‘ + yx‘ 

Thus 
1 

which is known as the Lorentz factor. 
The transformation for x’ and et’ is 

Y =  

Inverting, 

(9.29) 

(9.30) 
(9.3 1) 

(9.32) 
(9.33) 

The sign change is expected since the velocity of the original frame relative to the primed 
frame is -v. 

The complete transformation equation is 

(E’) = mE) [;I = [-” 0 - 

0 

.py 0 0 ct 

0 1  O ..][;I 
0 0 1  

(9.34) 

This is known as the Lorentz (or Fitzgerald-Lorentz) transformation. For small /3 (i.e. v + 
0), y -+ 1 and equations (9.34) become 

t‘ = t 

x’ = -vt + x 

Y’ = Y 
z’ = z 

which is the Galilean transformation, as required. 
For an arbitrary event E we can write 

(9.35) 

= (E’)T[q](E’) = R” (9.36) 

Note that in equations (9.7) and (9.8) R2 and R’’ are both zero because the event is a ray of 
light which originated at the origin. 
Now (E’) = [T](E) so equation (9.36) becomes 

(E)TITl[rll[TI(E) = 
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(9.37) 

but from equation (9.15) we see that 

R” = (EIT[rll(E’) = (E)TITl[ql[~l(E) = (E)T[ql(E) = R’ 
Thus we have the important result that 

(OT(,!?) = (E’)T(,!?’) = R2 
an invariant. In full 

(ct)’ - x - y - z = (ct’)2 - x (9.38) 2 2 2 J - y J  - zJ = R’ 

Let us now write E = E2 - E, and substitute into equation (9.37) giving 

(El; - ETmll(E2 - E , )  = (E;T - EIT)[rll(E; - E;)  

( ~ h I ( E 2 )  + (Jmll(El) - (Eh l (E , )  - (Ef)[rll(El;) 
= (E;T)[rll(E;) + (EITmll(E3 - (GT)[tll(E;) - (EIT)[rll(E;) 

which expands to 

The first term on the left of the equation is equal to the first term on the right, because of 
equation (9.37), and similarly the second term on the left is equal to the second term on the 
right. Because [q] is symmetrical the fourth terms are the transposes of the respective third 
terms and since these are scalars they must be equal. From this argument we have that 

9.3 lime dilation and proper time 
It follows from equations (9.37) and (9.37a) that if (AE)  = (E2 

( A E ~ ( A E )  = ( A E / ) ~ ( A E ~  = ( A R ~  

is an invariant. In full 

(Act)’ - (Ax)’ - ( A y f  - (Az)’ = (Act’)’ - (Ax’)’ 

= ( A R ~  
Because the relative motion is wholly in the x direction 

(Ay)  = (Ay’) and (Az )  = (Az’) 
so equation (9.39) can be written as 

(9.37a) 

- E, )  then the product 

(Act)2 - (Ax)’ = (Act’)2 - (Ax’)’ =(AR)’ + ( A y f  + ( A z ) ~  (9.40) 

If Act‘ is the difference in time between two events which occur at the same location in 
which is invariant. 

the moving frame, that is Ax’ = 0, equation (9.40) tells us that 

(Act’) = J[(Act)t - (Ax?] 

(Act’) = J[(Act)’ - p2(Act)’] 

= (ActV(1  - p’) 

But x = vt = pct and therefore 
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and by the definition of y, equation (9.29), we have that 

(9.41) 

The two events could well be the ticks of a standard clock which is at rest relative to the 
moving frame. 

Because y > 1, (Act) > (Act’); that is, the time between the ticks of the moving clock as 
seen from the fixed frame is greater than reported by the moving observer. This time dila- 
tion is independent of the direction of motion so it is seen that an identical result is obtained 
if a stationary clock is viewed from the moving frame. It is paramount to realize that the 
dilation is only apparent; there is no reason why a clock should run slow just because it is 
being observed. 

For example, if the speed of the moving frame is 86.5% of the speed of light (i.e. p = 
0.865) then y = 2. If the standard clock attached to the moving frame ticks once every 
second (Le. Act‘ = 1) then the time interval as seen from the fixed frame will be Act = 
y(Act’) = 2 seconds, and the moving clock appears to run slow. Looking at it the other way, 
when the ‘fixed’ clock indicates 1 second the moving clock indicates only half a second. The 
moving observer will still consider his or her clock to indicate 1 second intervals. 

In order that the speed of light shall be constant it is necessary that the length of 
measuring rods in the moving frame must appear to contract in the x direction in the same 
proportion as the time dilates. Thus 

(AL? = + ( A L )  (9.42) 

(Act? = - ( A c t )  1 
Y 

Returning again to equation (9.40) 

(Act? - (AX)2 = (Act’)2 - (Ax’)* 
if two events occur at the same location in primed frame, that is Ax’ = 0, then 

Act’ = J[(Act)’ - (AX?] (9.43) 
from which it is seen that the time interval as seen from the frame which moves such that 
the two events occur at the same location, in that moving frame, is a minimum time. All 
other observers will see the events as occumng at different locations but by use of equation 
(9.43) they will be able to compute t’. This time is designated the proper time and given the 
symbol T .  In equation (9.43) Ax will be vAt and thus 

ACT = Act’ = J[(Act? - ( A c t l c f ]  

AT = Atly 
so 

(9.44) 

9.4 Simultaneity 
So far we have assumed that ( A R f  is positive, that is (Act? > (Ax)’ , but it is quite possi- 
ble that (AR)’ will be negative. This means that IAXl > / A c t / ,  and therefore no signal could 
pass between the two events, for it is postulated that no information can travel faster than 
light in a vacuum. In this case one event cannot have any causal effect on the other. 

Figure 9.2 is a graph of c t  against x on which a ray of light passing through the origin at 
t = 0 will be plotted as a line at 45” to the axes. The trace of the origin of the primed axes 
is shown as the line x’ = 0 at an angle arctan@) to the x = 0 line. The ct’ = 0 line will be 
at an angle arctan(p) to the c t  = 0 line so that the light ray is the same as for the fixed axes. 



242 Relativity 

Fig. 9.2 

Consider two events E2 and E, which in the fixed axes are simultaneous and separated by 
a distance Ax. However, from the point of view of the moving axes event E, occurs first. If  
the moving frame reverses its direction of motion then the order of the two events will be 
reversed. 

Equation (9.40) gives 

o - (XI* = (cr’l2 - (x’)‘ 

ct‘ = -pyx (9.45) 
and equation (9.30) shows that 

Hence simultaneous events in one kame are not simultaneous in a second frame which is in 
relative motion with respect to the first. 

From the above argument it follows that if there is a causal relationship between two events 
(2 > 0 ) then all observers will agree on the order of events. This is verified by writing 

(9.46) 
and 

Because /Ax1 C 1 Act1 and (by definition) P C 1 it follows that if (Act) is positive then so is 
(Act’), and hence the order of events is unaltered. 

9.5 The Doppler effect 

The Doppler effect in acoustics is well known so we shall review this topic first. Here we 
shall look at the implications of Galilean relativity. Figure 9.3 shows two inertial frames of 
reference; set 2 is moving at constant speed v2 and v1 = 0. The Galilean equations are 

r2 = rl (9.48) 

Y2 = YI (9.50) 
2, = 21 (9.51) 

(Act)2 - (Ax)’ > 0 

(Act? = r [ W )  - P(W1 (9.47) 

X, = xI - v2r (9.49) 

Differentiating equation (9.49) we have 
x, = XI - v2 (9.52) 
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Fig. 9 3  

If the velocity of sound relative to the fixed frame is cI  then 
(9.53) 

Now because both observers agree on the value of time and hence agree on simultaneity 
they will both agree on the wavelength. (Both frames could be equipped with pressure trans- 
ducers and at a given instant measure the pressure variation along the respective x axes.) The 
wavelength h is related to the wave speed and the periodic time T by 

Hence, using equations (9.53) and (9.54) 

c2 = C I  - v2 

h = CJT,  = c2/T2 

TI - CI = CI 

(9.54) 

(9.55) _ -  - 
T2 c2 CI - V2 

u2 - 
VI 

and since frequency u = 1lT 

1 - VJCI (9.56) 

Thus if a sound wave is generated by a source at 0, then the frequency measured in the mov- 
ing frame, when v2 > v I ,  will be less. 

Now let us suppose that both frames are moving in the positive x direction. The first frame 
has a velocity v I  relative to a fixed frame in which the air is stationary and the second frame 
has a velocity v2 also relative to the fixed frame. We now have that 

(9.57) 
and 

(9.58) 
Thus 

_ -  

CI = c - VI 

c2 = c - v2 

c - v2 
T2 CI c - V I  

T ,  - c2 - 

u2 - c - v2 

_ -  _ -  
or 

(9.59) _ -  
V, c - v, 

Here we have the Doppler equation for both source and receiver moving. 
If frame 2 reflects the sound wave then equation (9.59) can be used for a wave moving in 

the opposite direction by simply replacing c by -c. The frequency of the sound received 
back in frame 1, ulr, is found from 
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"lr - c + VI 

"2 c + v2 

Ulr - Ulr u2 - (C + vI) (c  - ~ 2 )  

"I "2 ul (c + vz)(c - VI) 

A" - 

- -  
so that 

(9.60) _ -  -- - 

Now 

("lr - "I)/", _ -  
u 

- - (c + VIXC - v2) - (c + V2MC - VI) 

(c + v2)(c - VI) 

- - 24Vl - v2) 

(c + v2)(c - VI) 

which, for v small compared with c, reduces to 

(9.61) 

In dealing with light we start with the premise that the velocity of light c is constant and 
therefore the above analysis is not valid. However, we can start from the Lorentz 
transformation. Figure 9.4 depicts two frames of reference in relative motion. A wave of 
monochromatic light is travelling in the positive x direction and is represented by a wave 
function, W, in the 'fixed' frame where 0 = 27ru is the circular frequency and k = 2 d h  is 
the wavenumber. So for an arbitrary functionf 

(9.62) 

A" z  VI - V2) - -  u C 

w = f ( ; c t  - kr) 

0' 

and in the moving frame 

(9.63) 

Note that again, without loss of generality, we have taken the axes to be coincident at t = t' 
= 0. Recalling the Lorentz equations 

w = f(F ct' - k'x') 

ct' = yct - ypx 

Fig. 9.4 
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x’ = yx - ypct 

and substituting into equation (9.63) gives 

W = f F ( y c t  - y b )  - k’(yx - ypcr) (0‘ 
= f[($ + p k j y c r  - (k’ + qyx] 

but 
0 w’ 
k k’ 

c = - = -  

so 
0’ w = f y ( l  - P)cct - y(1 - P)kk ( 

Therefore comparing the arguments of equations (9.62) and (9.64) we see that 

w = w’y(1 + p) c c  
and 

Now by definition 
1 Y =  

k = k’y(1 + p) 

J(1 - P2) 
so substituting this into equation (9.65) gives 

l + p  I R  

1 - P  
= d( ) 

(9.64) 

(9.65) 

(9.66) 

(9.65) 

(9.67) 

This wave is travelling to the right so it will only be received by an observer in the ‘fixed’ 
frame for which x > vt. Such an observer will see the source approaching and the frequency 
of the light will be higher than that recorded in the moving frame. 

If the wave is travelling to the left then the wave functions will be of the form (note sign 
change) 

w = f ( F c t  + Ax) (9.68) 

Reworking the above analysis gives 

(9.67a) 

In this case an observer at the origin will record a frequency which will be lower than that 
recorded in the moving frame. That is, visible light generated in the moving frame will be 
shifted towards the red end of the spectrum. 

The same result would have been obtained had the moving frame been moving to the left, 
in which case p would have had the opposite sign. The observer would then have to be at x 
> vt. 
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off - - -  
of 

Therefore 
0” - - -  
o 

We see that if source and receiver are in relative motion the received light is red shifted if 
they are receding. If the receiver reflects the light back to the source then the frequency, of’, 
of the received reflected light will be hrther red shifted, so 

( ; J p” 
!!E’= (-) 1 - P  
0’ o 

- A o  - a‘‘ - - - 1 = -  -2P 
0 0 1 + P  

which for small j3 gives 

-2P 
A o  - _  
0 

or 
Au v - - -2- u c 

Thus 
V Au Z -2- 
h 

(This principle is used in the Bruel & Kjaer Laser Velocity Set type 3544.) 

(9.69) 

(9.70) 

(9.70a) 

9.6 Velocity 

We have stated that the speed of light is not affected by the relative speed of the transmitter 
and receiver. It is now necessary to consider the effect of relative motion of the reference 
frames on the observed velocities. Starting with the Lorentz equations, equation (9.34), writ- 
ten in differential form 

A(ct)’ = yAct - yPAx (9.7 1) 

AX’ = y A x  - yPA(ct) (9.72) 
Ay‘ = Ay (9.73) 
Az‘ = A z  (9.74) 

Ax’ - Ax - Pcht 
and dividing equation (9.72) by (9.71) gives 

- 
CAt‘ cAt - p h r  

Dividing the numerator and denominator of the right hand side by cAtand going to the limit 
At + 0 gives 

4 - u,Ic - p 
c I - puxlc 
_ -  

or 
u, - v 

u,‘ = 
1 - vu,/cz 

(9.75) 

The other two velocities are similarly found to be 



u?. u,: = 
. y( l  - vu,/c2) 
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(9.76) 

and 

(9.77) 

For a Galilean transformation if u, is close to c and -v is close to c then u,’could exceed 
c. Using equation (9.75) it can be shown that u,’ can never exceed c provided that the 
magnitudes of both u, and v are less than c, as required by the special theory of relativity. 
This is proved by rewriting equation (9.75) as 

I 
ur  - u,Ic - vlc 
c 1 - (v/c)(u,/c) 

- - 

which has the form 
x - Y  z =  
1 - yx 

so we require to show that if 1x1 c 1 and bl c 1 then IzI c 1. 
This is equivalent to proving 

I 1  - YXI > lx - .VI 

(1 - yx)’ > (x - y)2  

1 + y2x2 - 2yx > x2 + y2 - 2yx 

(1 - x’) > y2(1 - x2) 

1 > y 2  

or 

Finally 

which satisfies our conditions. Because the above expressions are symmetrical in x and 
y it follows that 1 > x’ is also satisfied. Thus our statement that IuiIcI 1 has been 
proved. 

We now seek a four-vector form of velocity that transforms in the same way as the event 
four-vector. The difference between two events may be written as 

(9.78) 

and we need to divide by a suitable time interval. The change in proper time AT is indepen- 
dent of the motion of the observer; hence dividing by this quantity will ensure that the veloc- 
ity so defined will behave under a Lorentz transform identically to (AE) .  

( A E )  = (Ac t  Ax A y  A z ) ~  

The speed of the particle relative to the fixed frame will be 

u = J(uf + us. + uf) (9.79) 
so that 

2 2 -1’2 y = ( l  - u / c )  

for a frame of reference moving with the particle. 
The proper time, as given in equation (9.45), is 

T = t / y  = t’ly’ 

(9.80) 
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where 
y’ = (1 - &/C2)-1R 

We can now write the proper velocity as 

or, since AT = A ~ f y ,  

(9.8 1 )  

(U? = y’(c u,‘ u,’ u;)T (9.82) 
As a check we shall now transform equation (9.81) using the transformation equation 

(9.34) to give 

Y’C = YOYC - YoP0YU.r 

Y‘UX‘ = -YoPoYC + Y O Y U X  

y’u; = yu,, 

y‘u: = yu; 

yo = (1 - v / c )  

where 
2 2 -1R 

and v is the relative velocity between the two frames. 
From equation (9.83) we get 

(9.83) 
(9.84) 
(9.85) 
(9.86) 

Thus from equation (9.84) 

ux - v 
u,’ = 

(1 - vu,/cz) 

and from equations (9.85) and (9.86) 

u z  u: = 
(1 - vu,/cz) 

which are the same as equations (9.75) to (9.77) derived previously. This result gives confi- 
dence in the method for obtaining the appropriate four-velocity. 

Now let us evaluate the product of (v> and its conjugate 
2 2 2 - (u)T(U) = y2(c2 - u, - uv - u,) 

= y2(cZ - u’) 

(9.87) 

which is, of course, invariant. 
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9.7 The twin paradox 

One of the most well known of the paradoxes which seem to defy logic is that known as the 
twin paradox. The story is that one twin stays on Earth whilst the other goes on a long jour- 
ney into space and on returning to Earth it is found that the travelling twin has aged less than 
the one who remained. The apparent paradox is that as motion is relative then from the point 
of view of the travelling twin it could equally well be said that the one remaining on Earth 
should have aged less because, owing to time dilation, the Earth-bound clock would appear 
to run slow. 

The essential difference between the two twins is that the traveller will have to change to 
another frame of reference in order to leave the Earth and yet another to return. The other 
twin remains in just one frame. Figure 9.5 depicts the series of events. Event A is when both 
axes are coincident and the primed set is moving with a velocity v in the x direction. Event 
B is when the traveller reaches the destination and changes to a double-primed frame which 
has a velocity -v in the x direction relative to the ‘fixed’ set of axes. 

In the usual notation, for the outward journey 

Ct’ = yct - ypx 

x’ = -ypct + yx 

and for the homeward journey 

C t N  = yct + ypx + cg 
X” = ypct + yx + x: 

(9.88) 

(9.89) 

(9.90) 

(9.9 1 )  

If the length of the outward journey is L then when x = L,  x’ = 0, so from equation 
t,“ and x{ are constants to be determined 

(9.89) 

0 = -ypct + yL  

Ct, = LIP 
or 

Fig. 9.5 
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From equation (9.88) 

ct; = ?/(LIP) - yPL = L?/(l/P - p) 
1 - p 2  - L - -  

P YP 
= Ly 

For the return joumey equation (9.90) gives 

et; = y(L/P) + yPL + et; = ct; 

Here we have arranged that the clocks in the double-primed set are synchronized with the 
primed set at event B. Thus 

1 1 ct; = Ly(- - p) - yL(- + p) 

= -2yPL 
P P 

so equation (9.90) becomes 

ct" = yet + ypr - 2yPL 

ct; = yctc - 2yPL 

At the end of the return journey, event C, when x = 0 

According to the fixed observer etc = c2L/v = 2L/P, but 

I ct; = y2L/P - 2yLP = 2yL(- - 0) 
P 

- 2L 
Y P  

- -  

Finally, comparing equations (9.92) and (9.93), we obtain 

t;r = 1 - -  
tc Y 

(9.92) 

(9.93) 

(9.94) 

Because y is never less than unity the total time read by the clocks which have travelled out 
and back will always be less than the clock which remained on Earth. Equation (9.94) is 
similar to equation (9.41) which defined time dilation, but if the process were simply time 
dilation then each twin would experience the same effects so that no difference in their ages 
would be observed. 

There are many 'explanations' of the paradox but we shall resist the temptation to make 
the results of the above argument appear commonplace. They are not a matter of everyday 
experience and therefore comprehension is difficult. The difference in ageing arises from a 
logical mathematical development directly from the two postulates of special relativity with 
no additional assumptions. The ageing effect has been tested on many occasions and the 
results confirm the predictions. 

9.8 Conservation of momentum 

Having defined a four-velocity which transforms under the Lorentz transformation in the 
same way as the four-vector and the four-displacement we now seek an expression for the 
four-momentum. We shall retain the classical definition of mass and assume that it is mea- 
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sured in the frame where the body is at rest, or approximately so; therefore it is a quantity 
upon which all observers will agree. This could be called the proper mass in the same way 
that we defined proper time but the convention is to call it the rest mass m. We have used 
the symbol m since this is our classical definition, but we shall refer to it as the rest mass in 
order to distinguish it from the relativistic mass used in some texts. 

Let us define the four-momentum as the product of the rest mass and the four-velocity. 
Clearly this will transform as the velocity thus 

(PI = m(U) 

(0 = mY(c Ur u, 4 T 

where 
2 ’  

y? = 1/(1 - u E )  

u = ( U ) T ( U )  = (Ut + ut + u3) 

and 
2 

Equation (9.95) expands to 

P, = myc 
e = myu, 
E: = myu, 
e = myu, 

If we now consider a group of particles then the four-momentum will be 
T (0 = Cm,y,(c 11, 4 U J I  

It is convenient to write this four-vector matrix in a partitioned form such as 

(0 = Cm,y,(c (4:)’ 
where (u), is the usual velocity three-vector. Thus there is a scalar part 

P, = Crn,y,c 

and a vector part 

(PI = Cm,y,(u), 

(9.95) 

(9.96) 

(9.97) 

(9.98) 

(9.99) 
(9.100) 
(9.101) 
(9.102) 

(9.103) 

(9.103a) 

(9.104) 

(9.105) 

If lull -e c then y, s 1 and by assuming P, to be constant equation (9.104) is simply the 
conservation of mass. By assuming that (p) is constant equation (9.105) becomes the con- 
servation of classical momentkm. 

It is easy to show that (P)’(P) = (P)T[r7](P) = M2c2where 
M = J(XmS) (9.106) 

We now postulate that relativistic four-momentum is also conserved for an isolated 

Xm,y,c = constant (9.107) 

Cm,y,(u), = constant (9.108) 

and M is called the invariant mass of the system. 

system of particles. Thus 

and 



252 Relativity 

Now 

1 Yi = J(1 2 u5/c2) 

Therefore equation (9.107) becomes 

m F  Cmiyic = C 
J ( l  - uf/c2) 

1 UZ 1 3 u; = Cm,c + Cm,c -+ + Cmlc-x-T + . . . 
2 c  2 2 c  

(9.109) - 1 1 2  - cm + - C - miui + . . . = constant c 2  

whereCm, = m. 
The implication here is that not only is mass conserved but, at least for moderate speeds, 

so is conventional kinetic energy. This suggests that the energy of a single body should be 
defined as 

(9.1 10) 2 E = cP, = ymc 

and the relativistic kinetic energy as 
2 T = E - m c  (9.1 11) 

Frequently one sees ym = m’, the relativistic mass, in which case equation (9.110) reads 

E = mrc2 

(PI = m’(u) 

and equation (?. 1 1 1) reads 

However, we feel that it is better to use the rest mass rather than the relativistic mass 
because this results in less confusion in the earlier stages of coming to terms with rela- 
tivity. There is no reason why the mass of an object should change just because it is being 
observed by an observer in rapid motion. There seems to be no advantage in associating 
the Lorentz factor y with the mass or with the velocity; it is clearer to leave y exposed as 
a reminder of the origin of the equations. We shall return to equation (9.1 10) later. 

We summarize by writing equation (9.104) as 

3’ (P) = E/c, Cyim(ui) 

2 

( 
where 

E = Zyim,c 

9.9 Relativistic force 

(9.104a) 

Having established a plausible definition of four-momentum it is reasonable to attempt to 
define force in terms of some rate of change of four-momentum. Our requirements are, as 
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before, that the four-vector shall transform as the position four-vector and that the definition 
shall agree with the Newtonian when the speeds are much less than that of light. 

We shall now investigate the implications of defining the force four-vector as the rate of 
change of the four-momentum with respect to the proper time. Thus for a single particle the 
relativistic force could be 

d T 

dt 
( F )  = y-y(mc mu, mu,, mu,) 

or 
d ( F , Y W T )  = Yx (ymc rm(u)T>T 

The form of ( f )  will be discussed in the following argument. 
Now 

1 Y =  
d(l - u2/c2) 

with 

u2 = (u)'(u) 

so that 

where 
d 

(a)  = -(U> dt 
the conventional acceleration. 
Substituting equation (9.1 13) into equation (9.1 12) leads to 

In its component form 

6 = y4m(a)T(u)/c 

F, = y2m[y2(a)T(u)u,/c2 + a,] 
F,  = y2m[y2(a)T(u)uy/c 2 + 

4 = y2rn[y2(alT(u)u,/c2 + aZ] 

(9.1 12) 

(9.1 13) 

(9.1 14) 

(9.115) 

(9.1 16) 

(9.1 17) 
(9.118) 
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It is apparent that if /I(( Q c, F, + ma,, the Newtonian form, but this does not mean that 
F, is the best choice for the definition of relativistic force. 

Let us consider the scalar product of force and velocity with the force 

(7) = (F, 4 E )  (9.1 19) 
Thus 

= y3m(a)'(u) (9.120) 

Using equation (9.1 13) 
- T  d 2 ~ f )  (u) = ym 9 c2 = y dt (ymc 

dt  
(9.120a) 

Here, as in all the preceding arguments, we have taken the rest mass m to be constant. 
From equation (9.1 10) we see that equation (9.120a) becomes 

(9.121) 

It would seem more appropriate, since we are dealing with three-vectors, that the right hand 
side of equation (9.121) should be simply the time rate of change of energy, in which case 
we need to redefine the relativistic three-force as 

(9.122) 

dE 
dt m u >  = Y- 

cf, = (F;/Y K h  mT 
the components of which are 

f, = y m h 2 W T ( 4 u . J c 2  + a x 1  

&. = ym[y2(a)T(u)u,,/c2 + a,,] 

= yrn[y2(a)'(u>u,/c2 + a,] 

Equation (9.12 1) now reads 

(9.123) 

(9.124) 

(9.125) 

(9.126) 

Hence the rate at which the relativistic force is doing work is equal to the time rate of 
change of energy, which is the familiar form. We conclude that equations (9.122) to (9.125) 
give the most convenient definition of relativistic force. (We have regarded force as a 
defined quantity.) 

It is important to note that only contact forces are considered here. Long-range forces lead 
us into serious difficulties because of the relativity of simultaneity. We can no longer expect 
the forces on distant objects to be equal and opposite. 

9.10 Impact of two particles 

In Fig. 9.6 we show two particles moving along the x axis and colliding. This process is 
seen from the laboratory frame of reference but using the Lorentz transformation it is 
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Fig. 9.6 

possible to use a frame in which the momentum is zero. This is similar to the the use of 
co-ordinates referred to the centre of mass but this time we use the centre of momentum, 
also abbreviated to COM. In this frame the components of total momentum are 

(9.127) 

(9.128) 

(9.129) 

(9.130) 

p0 = Cy,m, = Elc 

I: = Cy,m,u,, = 0 

e = Cy,m,u,, = 0 

e = Cy,mruzr = 0 
where 

y, = lIJ(1 - uf /c2)  

and 
2 2 2 2 u, = u,, + u,, + u;, 

For the present problem equation (9.127) is 
(9.13 1) 2 

YlmA + Y z m ~  = E/c = K m A  + y4mB 

and equation (9.128) is 

ylmAu] + y2mBu2 = o = Y3mAU3 + 'y4mBu4 (9.132) 

Now 

1 YI = 
J(1 - u:/c2) 

- u I  = J ( 1  - y;?) 

- -  YlU1 - J ( y f  - 1) 

so 

C 

and 

C 
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By inspection of equations (9.13 1) and (9.132) there is a trivial solution of u3 = uI  and u4 
= u2 but there is also the solution 

243 = --uI and 244 = - ~ 2  

This is the same form of answer that would have been expected for a low-speed impact with 
kinetic energy conserved. It also shows that the speed of approach (uI - u2) is equal to the 
speed of recession (u4 - 24,). Another way of looking at this situation is to regard it as a 
reversible process. That is, if the sequence of events is reversed in time then the process has 
exactly the same appearance. 

Let us now consider the case when the two bodies coalesce; in this case u4 = u,, so y4 = 
y3. Equation (9.132) immediately gives 

which means that u3 = 0 so that y, = 1. 
= y3u3(mA + mB> 

Equation (9.13 1) now yields 
E 
C2 

y , m ,  + y2mB = - = mA + mB 

which, because y > 1, will not balance unless we accept the premise that the total mass on 
the right hand side of the equation is greater than that on the left. In low-speed mechanics 
the energy equation would have been balanced by including thermal energy but here we see 
that this energy manifests itself as an increase in the rest mass. If we imagine this process 
in reverse then a body at rest disintegrates into two particles having kinetic energy at the 
expense of the rest mass of the system. In conventional engineering situations this does not 
occur, but in atomic and nuclear physics it does. As is well known it forms the basis for the 
operation of nuclear power stations. 

The connection between the loss in rest mass ( m )  and the release of energy should not be 
confused with the change in apparent mass (ym)  which results from Lorentz transforma- 
tions. Up to the last example the rest mass has been taken to be constant. 

9.1 1 The relativistic Lagrangian 

We have defined relativistic kinetic energy in equation (9.1 1 1). Equation (9.12 1) gives the 
relationship between the time rate of change of energy and the scalar product of force and 
velocity. This three-vector equation has the same form in classical and relativistic mechan- 
ics, that is 

dE - dT 
dt 

Cf>'(u) = --& - - 

From equation (9.112) we have that 

or 

Therefore 

dT = d(p)T(u) 
Let us define the co-kinetic energy as 
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(9.133) T* = (p)'(u) - T 

d P  = d(p)T(u) + (p)Td(u) - dT 
so that 

= @)'d(U) (9.134) 
Expanding equation (9.134) gives 

X -du, = Cp,du, 

Comparing coefficients of du, gives 

aT* 
I au, 1 

aTc (9.135) au, =PI 
This suggests that the correct form for the Lagrangian is 

Z = T * - V  (9.136) 

(see Chapter 3) where 

r* = @)'(u) - T = (p)'(u) - [ym(u) - me2] (9.137) 
Differentiation of this expression with respect to u, will confirm the above result. Note that 
for low speeds, where momentum depends linearly on velocity, T* = T. 

There is an interesting link with the principle of least action and with Hamilton's princi- 
ple. A particle moving freely in space with no external forces travels in a straight line. The 
trace of displacement against time is also straight. Figure 9.7 is a plot of ht against time 
where h is a factor with the dimensions of speed. The length of the line between times t ,  and 
t2, sometimes called a worldline, is 

s = JJ(ds2 + h'dt) 
12 

ti 
Let us now define S = ms and seek to minimize this function. Thus we set the variation of 
S equal to zero, 

t 2  

[I 

6s = 6JrnJ(ds2 + h'dt) = 0 

Fig. 9.7 
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t 2  

ti 
= 6 J-md(u2 + h2)dt = 0 

= o  ‘2 musu 
t ,  d(u2 + h2) 

= s p  

If we now let h2 = -c2 then 

which, from equation (9.105), reduces to 

1 t2 6s = -J- (p6u) dt = 0 
JC ti 

(9.138) 

(9.139) 

(9.140) 

So, summing for a group of particles and using equation (9.134) we obtain 

1 l2 6s = -J- s r  = 0 
JC t, 

or simply 
12 

ti 

t 2  

tl 

6 J - r  = o  (9.141) 

This suggests that Hamilton’s principle should read 

S J ( P  - v ) = o  (9.142) 

Again the potential energy, V, poses difficulties for long-range forces. 
The above is not a rigorous proof of the relativistic Lagrange equations or Hamilton’s 

principle but an attempt to show that there is a steady transition from classical mechanics to 
relativistic mechanics. The link is so strong that many authors regard special relativity as 
being legitimately described as classical. 

9.12 Conclusion 

In this chapter we started with the statement that the laws of physics take the same form in 
all inertial frames of reference and in particular that the speed of light shall be invariant. 
From this we developed the Lorentz transformation and introduced the concept of the four- 
vector. This results in space and time being inextricably %sed into a space-time continuum 
where simultaneity was also relative. 

We then proceeded to develop the four-vector equivalents to the classical velocity and 
momentum three-vectors. This led us to the first remarkable result that conservation of four- 
momentum encompassed the conservation of energy. The second remarkable result is the 
equivalence of mass and energy. 

The development has been purely mathematical without attempting to ‘explain’ the appar- 
ent inconsistencies which arise. It is sufficient to state that during most of the twentieth 
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century many experiments have been carried out to test the validity of the predictions and 
so far no flaw has been detected. The literature abounds with simplifications and pictorial 
representations of the paradoxes but the reader should beware of attempts to put this topic 
in a popular science guise. Some are very helpfkl but others can be misleading. 

We have used the position four-vector in the form 

( E )  = (ct x y Z)T 

but some put time as the last factor, with and without the c. 
The product of ( E )  and its conjugate has here been defined to be 

2 2 2 = (ct)2 - x - y - z 

= x2 + y 2  + z2 - ( C t f  

Others define it as 

which is equivalent to replacing the metric matrix [q] by its negative. 
In texts where the subject is studied in more depth indicia1 notation is commonly used, in 

which case the terms covariant and contravariant are used where we have used a standard 
vector form and its conjugate. 

A further variation is to write ( E )  as 

( E )  = (jct x y z )  

The use of j = 4- 1 means that there is no need for the metric matrix and this simplifies 
some equations. 

There is no clear winner in the choice of form for (E);  it is very much a matter of per- 
sonal preference. 

To conclude this chapter mention should be made of the general theory of relativity. This 
is far more complex than the special theory and was the real crowning glory of Einstein’s 
work. 

The essence of the general theory is known as the principle of equivalence. One form of 
the theory is 

In a small free4 falling laboratory the laws ofphysics are the same as for an inertial 
frame. 

The implication is that locally the effects in a gravitational field of strength -g are the 
same as thosz in a frame with an acceleration of g. Thus inertia force, which we hitherto 
regarded as a fictitious force, is now indistinguishable from a gravitational force. The force 
of gravity can hence be removed by the proper choice of the frame of reference. The 
ramifications of this theory are complex and have little bearing on present-day calculations 
in engineering dynamics. However, some study of the subject as presented in the Bibliogra- 
phy will be rewarding. 

One interesting example of the consequences of the principle of equivalence can be found 
by considering a frame which has a uniform acceleration g. In classical mechanics the path 
of particles will be parabolic as seen from the accelerating frame and, on a local scale, 
would be indistinguishable from paths produced in a frame within a gravitational field of 
strength -g. It is now proposed that light will be similarly affected. 

In Fig. 9.8 sketches of paths in space are shown for a frame which is accelerating in the 
y direction and in which particles are being projected in the x direction with increasing 
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initial velocities. These paths will be different. If we now plot a graph ofy against time then 
only one curve is produced irrespective of the initial velocity in the x direction. For small 
changes iny the curvature will be d*yldt = -g. This is assumed to be true for any speed, 
even that of light. Plots of x against time are straight lines with different slopes but the same 
curvature, in this case zero. This is a crude introduction to the notion of curvature in 
space-time. 

Fig. 9.8 (a) and (b) 



Problems 

1. A small Earth satellite is modelled as a thin spherical shell of mass 20 kg and 1 m in 
diameter. It is directionally stabilized by a gyro consisting of a thin 4 kg solid disc 
200 mm in diameter and mounted on an axle of negligible mass whose frictionless bear- 
ings are located on a diameter of the shell. 

The shell is initially not rotating while the gyro is rotating at 3600 revlmin. The satel- 
lite is then struck by a small particle which imparts an angular velocity of 0.004rads 
about an axis perpendicular to the gyro axis. 

Determine the subsequent small perturbation angle of the axis of the gyro and shell. 

Answer: 1.77 mrad at 0.36Hz 

2. A particle is dropped down a vertical chimney situated on the equator. What is the accel- 
eration of the particle normal to the vertical axis after it has fallen 23 m? 

Answer: 2.5 rmn/s2 

3. An aircraft is travelling due south along a horizontal path at a constant speed of 
7 0 0 M  when it observes a second aircraft that is travelling at a constant speed in a 
horizontal plane. Tracking equipment on the first aircraft detects the second aircraft and 
records that the separation is 8km with a bearing of 45" east and an elevation of 60". 
The rate of change of the bearing is 0.0 5rads and that of the elevation is 0.002 rads. 

Deduce the absolute speed and bearing of the second aircraft. 

Answer: 483 M, 107" east of north 

4. A spacecraft is on a lunar mission. Set up the equations of motion for free motion under 
the influence of the gravitational fields of the Earth and the Moon. Use a co-ordinate 
system centred on the centre of mass of the Earth-Moon system with the x axis directed 
towards the centre of the Moon. The y axis lies in the plane of motion of the Earth, 
Moon and spacecraft. 
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Answer: X =  -F,X, /R,  - FJ21R2 -+ FgIR3 + 2l& 
j ; =  -F,yIR, - FgIR, + F$IR, - 24L 

where 
F, = Gm-JR:, F, = GmM,,/R~ and F3 = LR2R3 
R ,  = distance of spacecraft from the Earth 
R, = distance of spacecraft from the Moon 
R3 = (x, + y2)"' 
f2 = angular velocity at Earth-Moon axis 
G = the universal gravitational constant 

5.  A gyroscope wheel is mounted in a cage which is carried by light gimbals. The cage 
consists of three mutually perpendicular hoops so that the moment of inertia of the cage 
has the same value about any axis through its centre. The xyz axes are attached to the 
cage and the wheel axis coincides with the z axis. 

Initially the wheel is spinning at 300 revlmin and the cage is stationary. An impulse 
is applied to the cage which imparts an angular velocity of 0.1 rads about the x axis to 
the cage plus wheel. 

Determine the frequency and amplitude of the small oscillation of the z axis. 
The relevant moments of inertia are: 

For the cage 3 kg m2 
For the wheel about its spin axis (the z axis) 
For the wheel about its x or y axis 

1.2 kg m2 
0.6 kg m2. 

Answer: 16.67 Hz, 0.054" 

6. An object is dropped from the top of a tower height H. Show that, relative to a plumb line, 
the object hits the ground to the east of the line by a distance given approximately by 

3 
where o is the angular velocity of the Earth, y is the angle of latitude and g is the appar- 
ent value of the gravitational field strength. 

7. An aircraft has a single gas turbine engine the rotor of which rotates at 10 000 revlmin 
clockwise when viewed from the front. The moment of inertia of the rotor about its spin 
axis is 15 kg m2. The engine is mounted on trunnions which allow it to pitch about an 
axis through the centre of mass. A link is provided between the upper engine casing and 
the fuselage forwards of the trunnions in order to prevent relative pitching. The moment 
arm of the force in the link about the centre of mass is 0.5 m. 

Determine the magnitude and sense of the load in the link when the aircraft is mak- 
ing a steady turn to the left at a rate of 3'1s and is banked at 30". 

Answer: 1424 N, compression 

8. Derive an expression for the torque on the shaft of a two-bladed propeller due to gyro- 
scopic action. Consider the propeller blade to be a thin rod. 
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Answer: 
m i  

Torque = - i2 sin(2a) 
2 , 3  

where S is the precession in the plane of rotation and a is the angle of the propeller 
blade measured from the precession axis. 

9. A satellite is launched and attains a velocity of 30 400 km/h relative to the centre of the 
Earth at a distance of 320 km from the surface. It has been guided into a path which is 
parallel to the Earth's surface at burnout. 

(a) What is the form of the trajectory? 
(b) What is the hrthest distance from the Earth's surface? 
(c) What is the duration of one orbit? 

Answer: elliptic, 3600 km, 130 min 

10. A motor and gear wheel is modelled as two solid wheels, M and GI, joined by a light 
shaft S1. The gear wheel G1 meshes with another gear wheel G2 which drives a rotor 
R via a light shaft S2. 

The moments of inertia of the wheels M, G 1, G2 and R are Z,, ZG,, ZGz and ZR respec- 
tively and the torsional stiffnesses of the two shafts are ks, and ks2. 

Derive the equations of motion for the angular motion of the system. 

11. Show that the torsional oscillations of a shaft having a circular cross-section are 
described by the solutions of the wave equation 

G a20 - a% 
p ax* a t  

where 8 is the rotation of a cross-section. G, p, x and t have their usual meanings. 
A steel shaft, 20 mm in diameter and 0.5 m long, is fixed at one end. A torque (T )  of 

amplitude 50 N m and varying sinusoidally with a frequency of 2 kHz is applied at the 
free end. What is the amplitude of vibration at a distance x from the free end? (G = 
80 GN/m2 and p = 7750 ks/m3.) 
Hint: For the steady-state response assume a sinusoidal standing wave solution of the 

form e = ~ ( ~ ) e ' ~ ' .  

Answer: 
Tc 

ZGo 
0 = - [COS(OX/C) - cot(oL/c) sin(m/c)] 

where c = ,(G/p), L = length and Z = polar second moment of area. 

12. A mechanical bandpass filter is constructed from a series of blocks, mass m, separated 
by axial springs each of stiffness s,. Also each mass is connected to a rigid foundation 
by a spring, each having a stiffness of s2. 

Considering the system as an infinitely long periodic structure show that the disper- 
sion equation is 
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2 s2 SI 

m m 
o = - + 4 - sin2(M2) 

where o is the circular frequency and k is the wavenumber. 
If  the passband is 100 Hz to 1000 Hz estimate the maximum speed at which energy 

can propagate and the associated frequency. 
Hint: Assume that the axial displacement 

u, = (amplitude) e"'"' - ") 

where n is the block number. 

Answer: 2827 blocWs at 323 Hz 

13. Describe the types of waves that can propagate in a semi-infinite homogeneous, isen- 
tropic, linearly elastic solid. Reference should be made to the following points: 

(a) waves in the interior, 
(b) waves on the free surface, and 
(c) reflection and refraction at an interface. 

constant cross-section. 
Sketch the phase velocity/wavenumber curves for waves in an infinite slender bar of 

14. A long uniform rod, with a cross-sectional area A ,  has a short collar, mass M, fixed a 
point distant from either end. At one end a compressive pulse is generated which is of 
constant strain magnitude, I c0 I, for a short duration K. 

Sketch the form of the strain pulse transmitted past the collar and pulse reflected from 
the collar. Derive expressions for the maximum tensile and compressive strains. The bar 
is long enough so that waves reflected from the ends arrive after the peak values of 
strain have occurred. 

Answer: 

Maximum transmitted compressive strain = I c0 I (1 - 
Maximum reflected tensile strain = I 
where c = ,(E/p) and p = EA/(Mc*). 

I 

15. A long, straight uniform rod (1) is attached to a short uniform rod (2) of a different 
material. The free end of rod (1) is subjected to a constant axial velocity for a period K. 

Show that the maximum force imparted to rod (1) is 
Z2 - Z ,  n 

w2[ - ( z, + z, 1 1 
where Z = EA/c for each respective bar and n is the number of reflections occurring at 
the interface between the two bars during the time T. 

16. A semi-infinite medium having low impedance (pc) is bounded by a rigid plate form- 
ing the z = 0 plane. The surface is lubricated so that the shear stress between the plate 
and the medium is zero. 
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Show that the dilatational wave is reflected at the surface without the generation of a 

Comment on the reflections generated by an incident transverse wave. 
Assume that the potential function for the incident dilatational wave has the form 

transverse wave. 

d[wr  - k, Sin(m) + kI Cos(az)] 
0 =  

Note that 
a0 aw 

u , = - + -  az ax 
and 

17. An electric motor is connected to the input shaft of a gearbox via an elastic shaft 
with a torsional stiffness of 3 MN &rad. The gearbox has a 3:l reduction, the input 
pinion has negligible inertia and the output gear wheels each have a moment of iner- 
tia of 4 kg m2. Each output shaft drives identical rotors of moment of inertia 
40 kg m2 through identical shafts each of torsional stiffness 0.5 MN d r a d .  

If one of the rotors is fixed set up the equations of motion for torsional vibration of 
the system using the twist in each shaft as the three generalized co-ordinates. 

Answer: 

5 0  [ lgg 'i ';I[ 31. 10' [ 0 0 5 0 30 "[ = [ %]  
18. Show that the differential equation for transverse waves in a uniform bar which has a 

constant tensile force T applied is 
d U 2  a4u a2u 

dX2 i?X - = 
T -  

where u is the lateral displacement, EZ is the flexural rigidity and pA is the mass per unit 
length. Rotary inertia and shear distortion have been neglected. 

19. A uniform long steel rod has a rubber block attached at its left hand end. The block is 
assumed to behave as an ideal massless spring of stiffness s. The end of the rubber block 
is displaced axially such that the displacement rises linearly in time T to an amplitude 
h and reduces linearly to zero in a further interval of T. 

Derive expressions for the strain in the steel bar for the region 0 C (ct - x )  C 3cT. 

Answer: 
For 0 C (ct - x )  c cT 
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-h  
cT 

= - (1 - e-p) 

for ct < (ct - x) < 2ct 

and for 2cT < (ct - x) 

where p = s/(EA) and z = (ct - x). 

20. Use Hamilton's principle to derive the equation given in problem 18. 
Derive expressions for phase velocity and group velocity. 

Answer: 
I 12 T EI 

- - T + 2 g k 2 )  - 1 

cg - ( pA pA cP 

2 1. Two uniform bars of equal square cross-sections (b X b) are welded together to form a 
'T'. The structure is given a sinusoidal input at the joint in the direction of the vertical 
part of the 'T'. As a result an axial wave is generated in the vertical part and symmetri- 
cal bending waves are generated in the side arms. 

Assuming the simple wave equation for axial waves and Euler's equation for bend- 
ing waves obtain an expression for the point impedance at the input point. Point imped- 
ance is defined to be the complex ratio of force/velocity at that point. 

Answer: 

22. Construct the rotation matrix for a rotation of 30" about the OZ axis, followed by a rota- 
tion of 60" about the OX axis, followed by a rotation of 90' about the OY axis. 

23. Determine the transformation matrix, T, for a rotation of a about the Oxaxis, followed 
by a translation of b along the 02 axis, followed by a rotation of 0 about the OV axis. 

24. A Stanford-type robot is shown in its home position in Fig. P24. The constants are d, = 
200 mm and d2 = 100 mm. 

The arm is now moved to 8, = 90°, 

(a) Draw up the table for €Ii, a ,  a ,  di. 
= - 120" and d3 = 220 mm. 
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Fig. P24(a) and (b) 

(b) Calculate the ,A ,  matrix. 
(c) Find the co-ordinates for the origin of the (XYZ), set of axes in terms of X,YJ,. 

25. Figure P25 shows a Minimover robot in an extended position with the arm in the X J ,  
plane. The co-ordinate system shown satisfies the Denavit-Hartenberg representation. 

(a) With reference to the data sheet given at the end of Chapter 8 complete the table of 
values of 8, a, a and d for all five joints and links. 

Jointllink e a a (mm) d (mm) 
I 0 -90" 0 
2 0 0 
3 0 175 0 
4 +20" 0 0 
5 *90" 0 0 100 
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Fig. P25 

(b) Determine the transformation matrix d4. 
(c) If the overall transformation matrix ,T, is constructed it is found that three of its ele- 

ments are 

TI4 = -1OOCIS23S4 + 1OOC1C23C4 + 175C,(C23 + C2) 

T24 = -1OOSlS23S4 + 1OOS,C23C4 + 175S,(C23 + C2) 

T3, = 1ooc23s4 + 1oos23c4 - 175(s2, + S2) 

where C, = cos e,, SI = sin 9, and C23 = cos(9, + 0,) etc. 

attached to the end effector. Evaluate these co-ordinates. 
Show that these elements, in general, give the co-ordinates of the origin of the axes 

26. Figure P26 shows a robot of the Stanford type which is moving such that the grip- 
per and arm remain in a horizontal plane. A dynamic model is depicted in the fig- 
ure. I, is the mass moment of inertia of the whole assembly about the Z, axis 
excluding the arm AB. The mass of the arm is represented by two concentrated 
masses m2 and m3. 

(a) The torque required from the motor causing the rotation, 8, about the Z, axis. 
(b) The thrust required from the unit producing the extension d. 
(c) During the main part of the movement the co-ordinates 0 and d are controlled so 

Using Lagrange’s equations, or otherwise, derive general expressions for: 

that their derivatives are constant, the values being 
d0 dd 
dt dt 
_ -  - 0.4rads - = 0.8m/s 
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Fig. P26 

At the instant when d = 0.6 m evaluate the torque and thrust as defined in (a) and (b). 

Answer: (c) 7.168 N m, 4.096 N 

27. Figure P27 shows an exploded view of a Puma-type robot. The links are numbered and 
a co-ordinate system is given which satisfies the requirements of the Denavitaarten- 
berg representation. Draw up a table for the six links and the corresponding constants 
a, a and d and the variables 8. 

The three non-zero dimensions are p ,  q and r and the variable angles are s, t ,  u, v, w 
and 0 .  Insert the correct values for all angles. 

Answer: 

Joint/link a d a e 
1 0 0 -90' 90 e 

2 P 0 0 0 
3 0 0 90" 90' 
4 0 4 -90" 0 
5 0 0 90' 0 
6 0 r 0 0 

28. A car has a mass of 1300 kg and a wheelbase of 2.5 m. The centre of mass for the 
unladen car is 1.2 m behind the front axle. The lateral force coefficient for all four tyres 
is 50 000 N/rad. Determine the static margin. 
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Fig. P27 

The vehicle is then overloaded with a 300 kg load in the boot the centre of mass of the 
load is 0.1 m behind the rear axle. Determine the new static margin and the critical speed. 

Answer: 1%. -9%,48 mph 

29. A car has a mass of 1300 kg and a wheelbase of 2.5 m. The centre of mass is midway 
between the axles and the tyre side force coefficient for all tyres is 50 OOO N/rad. The 
radius of gyration about a vertical axis through the centre of mass is 1.6 m. 

The car is travelling along a straight road at 30 mph when it is hit by a sudden gust 
of wind. Working from first principles show that yawing motion decays exponentially. 
Evaluate the time to half the initial amplitude. 

If the weight distribution is 60% on the front axle and all other data are as above what 
is the periodic time for oscillations following a disturbance? 

Answer: 0.20 s, 2.67 s 

30. An aircraft has the following data: 

Mass 20 OOO kg 
Radius of gyration about the y axis through the centre of mass 8 m 
Wing area 50 m2 
Wing aspect ratio 8 
Tail arm 9 m 

Structural 
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Tailplane area 10 m2 
Position of centre of mass behind the aerodynamic centre 1 m 

Gradient of lift coefficient - incidence curve 4.5 
Gradient of the tailplane lift coefficient - incidence curve 3.5 
Gradient of the fuselage pitching moment coefficient - incidence curve 0.5. 

Aerodynamic 

The aircraft is in level flight at 240 m / s  at an altitude where the density of the air is 
0.615 kg/m3. 

(a) Calculate the stick-fixed static margin. 
(b) The lift coefficient. 
(c) The tail volume ratio. 
(d) The lift/drag ratio. 

Answer: 0.049, 0.22, 0.72, 10.1 

3 1 .  The aircraft described in problem 30 receives a small disturbance which sets up a pitch- 
ing oscillation. Determine the periods of the damped motion. 

Answer: 7.79 s and 167 s 

32. A rocket with payload has a take-off mass of 6000 kg of which 4800 kg is fuel. The fuel 
has a specific impulse of 2900 Nskg and the rocket motor thrust is 70.63 kN. The 
rocket is fired vertically from the surface of the Earth and during its flight the aerody- 
namic forces are negligible and gravity is assumed constant. 

Let p = (mass at burn outhnitial mass) and R = (thrust of rocket (assumed con- 
stant)/take-off weight). With I = specific impulse obtain expressions for the velocity and 
height at burn out in terms of p, R, I and g .  

For the data given determine the values of velocity and height at bum out. 

Answer: 

vh = I [  ln(l/p) - (1 - p)/R] 

V ,  = 2558 d s ,  h, = 183 km and t,, = 3.58 minutes 
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Vectors, Tensors and Matrices 

Cartesian co-ordinates in three dimensions 
In our study of dynamics we have come across three types of physical quantity. The 
first type is a scalar and requires only a single number for its definition; this is a scalar. 
The second requires three numbers and is a vector. The third form needs nine numbers 
for a complete definition. All three can be considered to be tensors of different rank or 
order. 

A tensor of the zeroth rank is the scalar. A tensor of the first rank is a vector and may be 
written in several ways. A three-dimensional Cartesian vector is 

v =  x i + y j + z k  (Al.l) 

where i , j  and k are the respective unit vectors. 
In matrix form we have 

V =  ( i j k )  y = (elT(v (A1.2) 

It is common practice to refer to a vector simply by its components (V) where it is under- 
stood that all vectors in an equation are referred to the same basis (e). 

I: 1 
It is convenient to replace (x y z) with (x ,  x2 X J  so that we may write 

V = x, i from 1 to 3 (Al.3) 

This tensor is said to be of rank 1 because only one index is needed. 
A dyad is defined by the following expression 

A B C  = A(B*C) = E (Al.4) 

where AB is the dyad and A, B, C and E are vectors. In three dimensions a dyad may be 
written 

(AIS) 
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or 

(Al.6) 

The square matrix is the matrix representation of the dyad and can be written 

D, = A B ,  (A1.7) 

Thus the dyad is a tensor of rank 2 as it requires two indices to define its elements. The sum 
of two or more dyads is termed a dyadic. 

The majority of rank 2 tensors encountered in physics are either symmetric or anti- 
symmetric. For a symmetric tensor D, = D,,, and thus there are only six independent ele- 
ments. For an anti-symmetric tensor, D, = -DJ, and, because this implies that D,, = 0, there 
are only three independent elements; this is similar to a vector. 

The process of outer multiplication of two tensors is defined typically by 

AI,#lm = c,, (Al.8) 

where C is a tensor of rank 5. 
If both tensors A and B are of rank 2 then the element 

c,, =AIf& (A 1.9) 

Thus, if the indices range from 1 to 3 then C will have 34 elements. 
We now makej = k and sum over all values o f j  (or k) to obtain 

(A1.lO) 

Further, we could omit the summation sign if it is assumed that summation is over the 
repeated index. This is known as Einstein's summation convention. Thus in compact form 

c,, = AIB,/ (Al. 11) 

The process of making two suffices the same is known as contraction, and outer multi- 

In the case of two rank 2 tensors the process is identical to that of matrix multiplication 

If we consider two tensors of the first rank (vectors) then outer multiplication is 

plication followed by a contraction is called inner multiplication. 

of two square matrices. 

c,, = AB,  (A 1.1 2) 

and these can be thought of as the components of a square matrix. In matrix notation, 

[cl = ( A )  (B)' (AI. 13) 

If we now perform a contraction 

C = A P i  = ( Z A P i )  
we have inner multiplication, which in matrix notation is 

(A1.14) 

c = ( A ) ~ ( B )  (A1 . 1 5 )  

and this is the scalar product. 
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Alternatively, because (e) * (e)T = [I], the identity matrix, we may write 

C = A.B = (A)T(e).(e)T(B) = (A)T(B) (A 1.1 6) 

The vector product of two vectors is written 

C = A x B  (A 1.1 7) 
and is defined as 

C = A B s i n a e  (A1.18) 
where a is the smallest angle between A and B and e is a unit vector normal to both A and 
B in a sense given by the right hand rule. In matrix notation it can be demonstrated that 

C = (-A& + A2B3) i 

+ (A& - A,B3)I' 
+ (-A2Bl + AlB2) k 

or 

0 -A3 A2 

c = (eIT(C) = ( W [  2 1, -;, ][ (A1.19) 

The square matrix, in this book, is denoted by [A]" so that equation (Al. 19) may be written 

C = (e)T[A]x(B) (A 1.20) 

or, since (e).(e)T = [ 13, the unit matrix, 

C = (e)T[A]"(e).(e)T(B) 
= A".B (A1.21) 

where A" = (e)T[A]x(e) is a tensor operator of rank 2. 
In tensor notation it can be shown that the vector product is given by 

ci = EijkA,.Bk (A 1.22) 

where E gk is the alternating tensor, defined as 

cijk = +1 

= - 1 

if ijk is a cyclic permutation of (1 2 3) 

if ijk is an anti-cyclic permutation of (1 2 3) (A 1.23) 

= 0 otherwise 

Equation (A 1.22) may be written 

ci = (EijkAj)Bk (A 1.24) 

Now let us define the tensor 
Til, = (A 1.25) 

If we change the order of i and k then, because of the definition of the alternating tensor, T 'k  

= - T,; therefore T is anti-symmetric. 
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The elements are then 

= Elldl + & 1 2 2 A 2  + &13d3 = = -T21 

T13 = E I I J I  + E I z J ~  + E I J ~  = +A2 = -T31 

'23 = E Z I J I  + E22J2 + & 2 3 d 3  = -A,  = -T32 

and the diagonal terms are all zero. These three equations may be written in matrix form as 

(A1.26) 

which is the expected result. 

C = A x B ,  

In summary the vector product of two vectors A and B may be written 

(e)'(C) = (e)TL41x(e)*(e)T(4 

(c) = [AIX(B) 

or 

and 

C, = eflkA,Bk (summing overj and k) 
= T,gk (summing over k) 

Transformation of co-ordinates 

We shall consider the transformation of three-dimensional Cartesian co-ordinates due to a 
rotation of the axes about the origin. In fact, mathematical texts define tensors by the way 
in which they transform. For example, a second-order tensor A is defined as a multi-direc- 
tional quantity which transforms from one set of co-ordinate axes to another according to 
the rule 

A'mn = lnl,L,A, 

The original set of coordinates will be designated x,, x2, x3 and the associated unit vectors 

(A1.27) 

will be e,, e,, e3. In these terms a position vector V will be 

V = x,e, + x2ez + x3e3 = x,e, 

Using a primed set of coordinates the same vector will be 

V = x;e; + x;e; + x;e; = de', (A1.28) 

The primed unit vectors are related to the original unit vectors by 

e; = le, + me2 + ne3 (A 1.29) 

where I, m and n are the direction cosines between the primed unit vector in the x; direction 
and those in the original set. We shall now adopt the following notation 
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e; = allel + a,,e, + aI3e3 

(Al.30) 
with similar expressions for the other two unit vectors. Using the summation convention, 

el = aeei (A1.3 1) 

- - a,ej 

In matrix form 

and the inverse transform, b,, is such that 

bll bl2 b13 [ = [ b2l b22 b23 I[ 31 
b31 b32 b33 

(A1.32) 

(A1.33) 

It is seen that ~ 1 3  is the direction cosine of the angle between e; and e, whilst b31 is the direc- 
tion cosine of the angle between e, and e,’; thus a13 = b31. Therefore b, is the transpose of au, 
that is b, = aji. 

The transformation tensor a, is such that its inverse is its transpose, in matrix form [A][AIT 
= [ 11. Such a transformation is said to be orthogonal. 

Now 

V = eGi = 4-4 (A1.34) 

so premultiplying both sides by t$ gives 
(A1.35) 

(A1.36) 

It should be noted that 

xl! = a,+ 

In matrix notation 
is equivalent to the previous equation as only the arrangement of indices is significant. 

(v) = (e>’(x) = (e’IT(xf) (A1.37) 

but (e’) = [a](e), and therefore 

= (e)T[alT(x’) 
Premultiplying each side by (e) gives 

(XI = [aIT(x’) 
and inverting we obtain 

(x’) = [ a m )  
The square of the magnitude of a vector is 

(A1.38) 
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J = (x)'(x) = (xr)'(x') 

= (x)'EaI'[al(x) 

[al'bl = [I1 = Wlbl 

[b] = [a]' = [a]-' 

and because (x) is arbitrary it follows that 

where 

(A1.39) 

(A 1.40) 

In tensor notation this equation is 

b,aj, = aiiajl = 6, (Al.4 1) 

where 6, is the Kronecker delta defined to be 1 when i = 1 and 0 otherwise. 
Because ajiail = aj,aji. equation (A1.41) yields six relationships between the nine ele- 

ments a,, and this implies that only three independent constants are required to define the 
transformation. These three constants are not arbitrary if they are to relate to proper rota- 
tions; for example, they must all lie between - 1 and + 1. Another condition which has to be 
met is that the triple scalar product of the unit vectors must be unity as this represents the 
volume of a unit cube. So 

e, (e2 X e3) =e,' (e; X e;) = 1 (Al.42) 

since 

e; = allel  + al2e2 + aI3e, etc. 

We can use the well-known determinant form for the triple product and write 

(Al.43) 

or 

Det [a] = 1 

The above argument only holds if the original set of axes and the transformed set are both 
right handed (or both left handed). If the handedness is changed by, for example, the direc- 
tion of the z' axis being reversed then the bottom row of the determinant would all be of 
opposite sign, so the value of the determinant would be - 1. It is interesting to note that no 
way of formally defining a left- or right-handed system has been devised; it is only the dif- 
ference that is recognized. 

In general vectors which require the use of the right hand rule to define their sense trans- 
form differently when changing from right- to left-handed systems. Such vectors are called 
axial vectors or pseudo vectors in contrast to polar vectors. 

Examples of polar vectors are position, displacement, velocity, acceleration and force. 
Examples of axial vectors are angular velocity and moment of force. It can be demonstrated 
that the vector product of a polar vector and an axial vector is a polar vector. Another inter- 
esting point is that the vector of a 3 x 3 anti-symmetric tensor is an axial vector. This point 
does not affect any of the arguments in this book because we are always dealing with right- 
handed systems and pure rotation does not change the handedness of the axes. However, if 
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the reader wishes to delve deeper into relativistic mechanics this distinction is of some 
importance. 

Diagonalization of a second-order tensor 
We shall consider a 3 X 3 second-order symmetric Cartesian tensor which may represent 
moment of inertia, stress or strain. Let this tensor be T = 7', and the matrix of its elements 
be [a. The transformation tensor is A = A ,  and its matrix is [A]. The transformed tensor 
is 

[TI = [AITITl[Al (A 1.44) 

Let us now assume that the transformed matrix is diagonal so 

h,  0 0 

0 0 h3 

[ T ' ]  = [ 0 h2 0 ] (A 1.45) 

If this dyad acts on a vector (C)  the result is 

c; = hlCl 

c; = h3C3 

c; = h,C, (A 1.46) 

Thus if the vector is wholly in the x r  direction the vector i"xr would still be in the x r  direc- 
tion, but multiplied by XI. 

Therefore the vectors Clri ' ,  C2'j' and C3'kr form a unique set of orthogonal axes which 
are known as the principal axes. From the point of view of the original set of axes if a vec- 
tor lies along any one of the principal axes then its direction will remain unaltered. Such a 
vector is called an eigenvector. In symbol form 

TJq = hCi (A 1.47) 

or 

[TI ( C )  = h(C) (A 1.48) 

Rearranging equation (Al.48) gives 

( [ T l  - UllHC) = (0) 

where [ 13 is the unit matrix. In detail 

3 

(T33 - h)  

(A 1.49) 

This expands to three homogeneous equations which have the trivial solution of (C)  = (0). 
The theory of linear equations states that for a non-trivial solution the determinant of the 
square matrix has to be zero. That is, 
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(TI, - 1) TI2 
(T22 - T23 (A1.50) 

T3 I T32 v 3 3  - I =  O 
[ T2, 

This leads to a cubic in h thus yielding the three roots which are known as the eigenvalues. 
Associated with each eigenvalue is an eigenvector, all of which can be shown to be mutually 
orthogonal. The eigenvectors only define a direction because their magnitudes are arbitrary. 

Let us consider a special case for which T I 2  = T21 = 0 and TI3 = T = 0.  In this case for 
a vector (C) = (1 0 O)T the product [Tl(C) yields a vector ( T I ,  0 0) , which is in the same 
direction as (C). Therefore the x ,  direction is a principal axis and the x2, x3 plane is a plane 
of symmetry. Equation (Al.50) now becomes 

(A1.51) (Til - h)[(T22 - h)(T - - Tf3I = 0 

T3 I 

In general a symmetric tensor when referred to its principal co-ordinates takes the form 

h,  0 0 

0 0 1 3  

[TI = [ 0 A2 0 ] (A1.52) 

and when it operates on an arbitrary vector (C) the result is 

(Al.53) 

Let us now consider the case of degeneracy with h3 = h2. It is easily seen that if ( C )  lies in 
the xs3 plane, that is ( C )  = (0 C2 C3)T, then 

[TI(C) = h2 c* (Al.54) L3 I 
from which we see that the vector remains in the x g 3  plane and is in the same direction. This 
also implies that the directions of the x2 and x3 axes can lie anywhere in the plane normal to 
the x, axis. This would be true if the x I  axis is an axis of symmetry. 

If the eigenvalues are triply degenerate, that is they are all equal, then any arbitrary vec- 
tor will have its direction unaltered, from which it follows that all axes are principal axes. 

The orthogonality of the eigenvectors is readily proved by reference to equation (Al.48). 
Each eigenvector will satisfy this equation with the appropriate eigenvalue thus 

[TI(C), = h,(C), (A1.55) 

and 
[TI(C), = h2(C)* (A1.56) 

We premultiply equation (A1.55) by (C): and equation (A1.56) by (C): to obtain the scalars 
(C):[Tl(c)l = h,(C):(C), (A1.57) 
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and 

(C)  :[TI(C)2 = 1 2 ( C )  kC)2 (A1.58) 

Transposing both sides of the last equation, remembering that [ r ]  is symmetrical, gives 

( C ) m C ) I  = h*(C):(C), (A1.59) 

and subtracting equation (Al.59) from (Al.57) gives 

0 = (1, - 1 2 ) ( C ) 3 C ) I  (A1.60) 

so when 1, * 1, we have that ( C ) ~ ( C ) ,  = 0; that is, the vectors are orthogonal. 
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ANALYTICAL DYNAMICS 

Introduction 

The term analytical dynamics is usually confined to the discussion of systems of particles 
moving under the action of ideal workless constraints. The most important methods are 
Lagrange’s equations which are dealt with in Chapter 2 and Hamilton’s principle which was 
discussed in Chapter 3. Both methods start by formulating the kinetic and potential energies 
of the system. In the Lagrange method the Lagrangian (kinetic energy less the potential 
energy) is operated on directly to produce a set of second-order differential equations of 
motion. Hamilton’s principle seeks to find a stationary value of a time integral of the 
Lagrangian. Either method can be used to generate the other and both may be derived from 
the principle of virtual work and D’ Alembert’s principle. 

Virtual work and D’Alembert’s principle are regarded as the hndamentals of analytical 
dynamics but there are many variations on this theme, two of which we have just men- 
tioned. The main attraction of these two methods is that the Lagrangian is a function of 
position, velocity and time and does not involve acceleration. Another feature is that in 
certain circumstances (cyclic or ignorable co-ordinates) integrals of the equations are read- 
ily deduced. For some constrained systems, particularly those with non-holonomic con- 
straints, the solution requires the use of Lagrange multipliers which may require some 
manipulation. In this case other methods may be advantageous. Even- if this is not the case 
the methods are of interest in their own right and help to develop a deeper understanding 
of dynamics. 

Constraints and virtual work 

Constraints are usually expressed as some form of kinematic relationship between co-ordi- 
nates and time. In the case of holonomic constraints the equations are of the form 

(M. 1) $ (qit) = 0 
l < i < m  and 1 5 j 5 r .  

be integrated we have 
For non-holonomic constraints where the relationships between the differentials cannot 

ajidqi + c,dt = 0 ( M . 2 )  
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Differentiating equation (A2.1) we obtain 

which has the same form as equation (A2.2). 
In the above equations we have assumed that there are rn generalized co-ordinates and r 

equations of constraint. We have made use of the summation convention. 
For constraint equations of the form of (A2.1) it is theoretically possible to reduce the 

number of co-ordinates required to specify the system from rn to n = rn -r, where n is the 
number of degrees of freedom of the system. 

Dividing equation (A2.2) through by dt gives 

a,,ql + e, = 0 

and this may be differentiated with respect to time to give 

aj,qj + ajiqi + i, = 0 

or 

aJlql = b] (A2.5) 
where b, = -(h,,q, + 4). Note that a, h, b and c may, in general, all be functions of q, q 
and t. 

By definition a virtual displacement is any possible displacement which satisfies the con- 
straints at a given instant of time (i.e. time is held fixed). Therefore fiom equation (A2.3) a 
virtual displacement 6q, will be any vector such that 

= W . 6 )  

There is no reason why we should not replace the virtual displacements 6q, by virtual 
velocities v, provided that the velocities are consistent with the constraints. The principle of 
virtual work can then be called the principle of virtual velocities or even virtual power. 

D’Alembert argued that the motion due to the impressed forces, less the motion which the 
masses would have acquired had they been free, would be produced by a set of forces which 
are in equilibrium. Motion here is taken to be momentum but the argument is equally valid 
if we use the change of momentum or the mass acceleration vectors. This difference in 
motion is just that due to the forces of constraint so we may say that the constraint forces 
have zero resultant. If we now restrict the constraints to ideal constraints (Le. frictionless or 
workless) then the virtual work done by the constraint forces will be zero. In mathematical 
terms the sum of the impressed force plus the constraint force gives 

F: + FT = rnf, W . 7 )  

F: = m,a, (A2.8) 

Ff = rn,(fL - a,) (A2.9) 

and the impressed force alone gives 

Therefore the constraint force is 

Now the principle of virtual work states that 

(A2.10) 
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or 

~ m , ( t ,  - a,).tir, = o 

C ( m , t ,  - ~ : ) - t i r ,  = o 

(A2.11) 

or 

(A2.12) 

Gauss’s principle 

A very interesting principle, also known as the principle of least constraint, was introduced 
by Gauss in 1829. Gauss himself stated that there is no new principle in the (classical) sci- 
ence of equilibrium or motion which cannot be deduced from the principle of virtual veloc- 
ities and D’ Alembert’s principle. However, he considered that his principle allowed the laws 
of nature to be seen from a different and advantageous point of view. 

Referring to Fig. A2.1 we see that point a is the position of particle i having mass m, and 
velocity v,. Point c is the position of the particle at a time At later. Point b is the position that 
the particle would have achieved under the action of the impressed forces only. Gauss 
asserted that the fbnction 

(A2.13) G = ~ m , b c ,  

will always be a minimum. 

+2 

For the small time interval At we can write 

(A2.14) + 1 2F‘ ab, = v,At + - A t  -2 
2 m, 

and 

ac, + = v,At + - A t  1 2(:: -L + - E:) (A2.15) 2 

Therefore 

(A2.16) + -+ + 1 2F:  bc, = ac, - ab, = - A t  - 
2 m, 

Fig. A2.1 
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so that 
+ mibci a Ff (A2.17) 

Now let y be another point on the path so it is clear that $ is a possible displacement con- 

(A2.18) 

sistent with the constraints. The new Gaussian function will be 
+ + 2  (G + AG) = x m i ( b c i  + CY,) 

(A2.19) 

Because m&? is proportional to the force of constraint and 2 is a virtual displacement the 
principle of virtual work dictates that the third term on the right will be zero. The first term 
on the right is simply G so we have that 

+ 2  AG = X m i c y i  2 o (A2.20) 

Therefore Gauss concluded that, since the sum cannot be negative, then (G + AG) 3 G, so 
that G must always be a minimum. 

The Gaussian could also be written in the form 

G = ~ m l ( F : l m , ) 2  = ~ m , ( r ,  - izJ2 (A2.2 1) 

from which it is apparent that the true set of constraint vectors or the true set of acceleration 
vectors are those which minimize G. 

It must be emphasized that the constraint forces are workless and as such act in a direc- 
tion which is normal to the true path. 

Gibbs-Appell equations 

The Gibbs-Appell formulation is also based on acceleration and starts with the definition of 
the Gibbs function S for a system of n particles. This is 

1=3n 1 s = z -rn,al2 
r = l  2 

Clearly 

(A2.22) 

(A2.23) 

If the displacements are expressible in terms of m generalized co-ordinates in the form 

x, = x,(ql . . . qmt) (A2.24) 

then, as in the treatment of Lagrange’s equations, 

axi ax, 
aqj J at 

dx, = -dq + -ddt (A2.25) 

and 

. &, . ax, xi = - q .  + - 
aqj J at 

(A2.26) 
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We shall consider the differentials of the generalized co-ordinates to be the sum of two 
groups: the first group dq, (i from 1 to m-r),  and the second group dyj ( j  from m-r+l to 
m). The difference between the two groups is that dq can be integrated to give q whereas dy 
cannot be integrated. The velocities are expressed as q; and fi. The latter group is formed 
from quasi-velocities, so called because they satisfy the constraints but are not necessarily 
associated with any identifiable displacement. Quasi-velocities can be chosen in much the 
same way as generalized co-ordinates are chosen, that is they must satisfy the constraints. 
The number of quasi-velocities must be no smaller than the number of non-holonomic con- 
straint equations but all velocities can be considered to be quasi and it is common practice 
to do so. 

The quasi-velocities can be expressed in terms of the generalized velocities as 

y; = Ui,& + g, (A2.27) 

and for linear equations inversion gives 
qi = v..y. + h; 

r / l  (A2.28) 

Substituting this expression in equation (A2.5) leads to a constraint equation of the form 

A,%. + B; = 0 (A2.29) 

and differentiating with respect to time gives 

Ag$ + (A,$ + B,) = 0 (A2.30) 

Now from equation (A2.28) we have 

dq, = vr/dr, + h,dt (A2.3 1) 

Therefore a virtual displacement, for which time is held constant, is 
6% = VIJ6Y. (A2.32) 

Similarly the constraint equation (A2.6) for virtual displacements becomes 
A,6X = 0 (A2.33) 

If the Gibbs function is expressed in terms of the generalized co-ordinates then the usual 
generalized force Q is 

as Qi = - 
a 4 i  

(A2.34) 

The total virtual work done by the generalized forces is 

6W = Q,Sqj = Qj(vi,6y,) = q 6 ~  (A2.35) 

where r is the quasi-generalized force and is related to the usual generalized force by 

r; = QivU (A2.36) 

Other methods 
A further development has been proposed which is also based on acceleration. One form of 
Gauss’s principle, equation (A2.2 I), gives 

G = mi(fi - ai)* (A2.37) 
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so that 

(G + AG) = m,(f ,  - ai + S f $  

Thus 
(A2.38) 

(A2.39) 
2 AG = m;(6f i )  + 2mi(f;  - ~ ; ) * 6 i ' ~  

Now from the constraint equation (A2.5) and changing to upper case to avoid confusion 
with other terms 

A,.?. r l ,  = Bi (A2.40) 
so if Si'; satisfies the constraints then 

Ajj(i'; + 6 f i )  = B, 

from which it follows that 
= 0 

rl 

(A2.41) 

(A2.42) 

Since any set of values for 6Yi which satisfy the constraints may be used it follows that in 
equation (A2.39) 

(A2.43) mi( f i  - Uj).6Yi = 0 

The new method is expressed by a 'fundamental equation' which in matrix form is 

( Y )  = (a) + [ M ] - " ~ ~ [ A ] [ M ] - " ~ ~ ~ { ( B )  - [A](a)} (A2.44) 

where the superscript + signifies the pseudo-inverse or Moore-Penrose inverse; (i') is the actual 
column vector of accelerations and (a) is the column vector of the unconstrained system. 

The pseudo-inverse of any matrix [A], square or non-square, is such that it satisfies the 
following conditions 

[AI[AI+[Al = [AI 

[Al+[AI[~I+ = [AI' 
and [A][A]+ and [A]'[A] are both symmetric. 

We now write equations (A2.43), (A2.40) and (A2.42) in matrix form. Thus 

(6P)T[M]{(i') - (a ) }  = 0 (A2.45) 

(A2.46) 

(A2.47) 

It is known that {[Xl[Yl}' = [yI'[x]', and the pseudo-inverse of a column matrix (Y) is 
easily shown to be 

(A2.48) 

Therefore inverting equation (A2.47) gives 

(GP)T[A]+ = (0) (A2.49) 
In order to show that the 'fundamental equation' satisfies both the constraint equation and 

the principle of virtual work it is convenient to express the acceleration vectors in a 
weighted form. The following definitions will be used 
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(A2.50) 
(A2.5 1) 

[ A ]  = [A][M]-’ /2  (A2.52) 
and using the above weighted terms we arrive 

(A2.53) 
We shall now demonstrate that this equation satisfies the constraint equation. Equation 
(A2.46) can be written as 

Premultiplying equation (A2.45) by 
at 

( e )  = (a) + [A-I+{(B) - [AI(a)} 

[A][M]-”’[M]”’(i.) = (B) 
or 

[A-Kt) = (m (A2.54) 
Thus substitution into (A2.53) followed by a slight rearrangement gives 

Premultiplying both sides by [ A _ ]  leads to 

The pseudo-inverse is defined such that 

( ( e )  - (a)} = [Al+{[A_l(e) - [A-I(a)) (A2.55) 

[4l{( t )  - (a)> = [AI[AI+[AI{(L) - (a)} (A2.56) 

[AI[Al+[Al = [AI (A2.57) 
Therefore the constraint equation is satisfied. 

To show that the principle of virtual work is satisfied we premultiply equation (A2.55) by 

(A2.58) 
The left hand side is zero because of equation (A2.45) and the right hand side is zero 
because of equation (A2.49). Thus the equality is proved 

The ‘fundamental equation’ therefore satisfies the constraints and basic equations of ana- 
lytical dynamics. Any advantage that this method may have is that the constraint equation 
is not affected by whether the constraints are holonomic or not. The disadvantage is that the 
unconstrained accelerations have first to be determined. For systems involving only parti- 
cles, such that the mass matrix is diagonal, the unconstrained accelerations are readily found 
and some advantage may be obtained. 

and rearrange it to give 

( W T { ( E )  - (a)) = (6e)T[A1+{(B) - [AI(@))  
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Cu rvil inear co-ordinate systems 

In the chapter dealing with continuous media all the equations were presented using Carte- 
sian co-ordinates, but in many instances it is advantageous to use curvilinear co-ordinates 
such as cylindrical or spherical. We shall develop a general approach and then apply it to the 
two systems mentioned above. 

In Cartesian co-ordinates the differential vector operator (equation (7.4)) is 

v = (i j k)(aiax aiay 

= ( m )  

Equation (7.12) defines rotation 

1 1 
2 2 

1 
2 

Jz = -(e)T(v)"(u) = - v x u  

= - curl u 

Equation (7.32) defines dilatation 

A = (V)'(u) = V * u  
= divergence u 

The equations of motion can be written as a single vector equation 

p!?! = (It. + 2p)gradA - 2pcurlJz 
a? 

or 
2 

a u  = (h + 2p)VA - 2pVXJz 

Premultiplying both sides by V, that is taking the divergence of both sides, gives 

(A3.1) 

a2A p - = (h + 2p)V'A a t  
since V T x n  = 0 
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Premultiplying both sides by VX, that is taking the curl of both sides, yields 

a2(28) = - 2pv x (V x f2) 
a t  P 

= -2p[(V.n) - (v.v)n] 
but P n = P(VXu)/2 = 0 and therefore 

p!$ = pV2R 

Curvilinear co-ordinates 

Curvilinear co-ordinates will be described by the magnitudes q,, q2 and q3 with the corre- 
sponding unit vectors e,, e2 and e3. A small change in the position vector is 

d r  = e,h,dq, + qh2dq2 + e3h3dq3 

= (eIT[hl(dq) 
= e,h,dq, (A3.2) 

where 

0 
[h]  = [i 2 :] 

The scale factors, [h], are defined so that h,dq, is the elemental length. For Cartesian co-ordi- 
nates the scale factors are each unity. 

dA, = h,dq2h3dq3 etc. 

h3 

From Fig. A3.1 we see that the areas of the faces of the elemental volume are 

so 

(&I = (dq2dq3h2h3 dq3dq,h3hl dqldq2hlh2f (A3.3) 

Fig. A3.1 
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The volume is 

dV = d9ld9*d9,hlh2h, (A3.4) 

Divergence 

The divergence of a vector function F can be found by use of the divergence theorem swl (div F)dV = L$;lA (A3.5) 

The integral on the right hand side is known as the flux through the surface. If the vec- 
tor represents the velocity of a fluid then the flux would be the volumetric flow rate of 
fluid leaving the volume enclosed by the surface. If we now make the volume tend to 
zero 

div F = lim - F.dA (A3.6) 
V-bO v ‘S surface 

For the elemental volume shown in Fig. A3.2 

d i v F  = - ’ 7- a(cAf)dgi 4 a91 1 
- W ( K  aq2 a93 ” (A3.7) a a (h2h&> + -(h3hlfi) + -(hlh24) - 1  

Curl 
The component in the n direction of the curl of a vector function can be defined by the fol- 
lowing integral, which is known as Stoke’s theorem 

(A3.8) 

The integral is known as the circulation due to its interpretation if the vector F is again the 
velocity of a fluid. 

(curl F).n = lim -!-$,,rds 
An* A n  

Fig. A3.2 



Appendix3 291 

If we take n to be e, then, from Fig. A3.3, for the elemental area 

$F-ds = F,h2dq2 - F, + -dq3 h2dq2 + - ah2 dq,dq,) ( 2 )( a93 

( a42 * )( a42 
a3 - 4h3dq3 + 6 + -dq2 h3dq3 + -dq2dq3) 

- - ( -- a(g2) + p)dq2dq,  a(@,) 
a42 

Thus, since dA, = h,dq2h3dq3 we have 

(curl F).e, = - 1 ( ~ amg:) - - W h 2 ) )  (A3.9) 
h2h3 a43 

with similar expressions for the other two components. 

Fig. A33(a) and (b) 
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Gradient 

The gradient of a scalar function f is defined so that its component in any given direction, n, 
is the directional derivative in that direction so 

gradmen = - af (A3.10) 
as 

where s is the distance along the curve parallel to n. Now 

so if we choose n = e, 

dr  = hidqle, + h2dq2ez + h3dq3e3 

. Af Af - 1 a !  (gradCf)).e, = lim - = lim - - -- 
As* AS @I* hiAqi hi *I 

Thus 

g r a d 0  =--e 1 a !  + --q 1 a! + -- 1 a !  e3 (A3.11) 
hi as, I h2 a42 h3 a43 

Cylindrical co-ordinates 

From Fig. A3.4 we have 

r = re; + zk 

Therefore 

d r  = drq + rde, f dzk 

but de, = de q, so 

d r  = l d r q  + r d e e ,  + l d z k  

Thus 

h i = l  h z = r  and h 3 = 1  

Fig. A3.4 Cylindrical co-ordinates 
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Spherical co-ordinates 

Figure A3.5(a) shows one definition of the spherical co-ordinates 

r = r q  

and 

d r  = d r q  + r d q  

but 

d q  = r c o s 0 d 0 q  + r dse, 

d r  = 1 drq + rcosnd0e,, + r doe, 

Thus the factors for the co-ordinates r, 0 and 0 are 
h,  = 1 h, = rcos0 and h, = r 

so 

Figure A3.5(b) shows an alternative definition which leads to the following expressions 
for the factors for co-ordinates r, 8 and 0 

h,  = 1 h, = r and h, = rsin0 

Fig. A3.5 Spherical co-ordinates 

Expressions for div, grad and curl in cylindrical and spherical co-ordinates 

Direct substitution of the scale factors into equations (A3.7), (A3.9) and (A3.11) will gen- 
erate the required vector formulae. 
Let 

[LI = [h, h2 h31diag 

[zl = [h2h3 h3hl hlh21diag 
and 

v = h,h2h, 
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which are the scale factors which relate to length, area and volume respectively. In these 
terms the general expressions are 

div(F) = V-'(VT{ [x](F)} 
curl(F) = [AII-'[VI~{[[ZI(F)J 

grad(f) = [~I-'(v)(F) 
where 

For spherical co-ordinates corresponding to Fig. A3.5(a) 

1 a 2  a 
rcosa dr ae div (F) = (-(r cos0l;;) + -(r 4) + 

1 af 1 af -q + - -e0 af gradcf) = -er + - 
ar rcoso ae r a0 

For spherical co-ordinates corresponding to Fig. A3.5(b) 

1 a4 +- -  1 a(:Q 1 a(sinO&) 
7 ar rsine ae r sine 80 div(F) = - + - 

a 
r sine ( a  ae a0 

curl (F) = - -(sine F,) - -(&))er 

gradcf) = -e, af + - 1 --e, af + - 1 af 
ar r ae r sine 

In cylindrical co-ordinates 
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l a  l a  a 
r ar r %  az 

div ( F )  = - - ( rE)  + --(8) + -(Q 

g r a d 0  = -e, a! + - 1 --q a !  + -q a !  
ar r a0 az 

Strain 

In cylindrical co-ordinates 

For spherical co-ordinates corresponding to Fig. A3.5(b) 

Stress 
For any orthogonal co-ordinate system the stresses in an isotropic linear solid are related to 
the strains by 

= + 9J + ekk) + 2pe44 

+ 5J + ' k k )  + 2 p q ,  O), = 
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and 

og = Peg 

(T. Jk = @ 

0, = peki 

where h and p are the Lame constants. 

k = z. In spherical co-ordinates i = r, j = 8 and k = 0. 

In Cartesian co-ordinates i = x , j  = y and k = z. For cylindrical co-ordinates i = r , j  = 8 and 
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